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Motivation

* Digital design tools and methodology have improved dramatically
letting us create large SoCs with billions of transistors

Dozens of domain-specific processors or accelerators
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e But completing these designs (with software)

* Takes years
e Costs hundreds of millions of dollars
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Waterfall Approach to Accelerator Design

* A waterfall approach is still used for most accelerator designs
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Agile Approach to Accelerator Design

* We explore an agile hardware/software design flow

* Incrementally update the hardware accelerator and software to map to it
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Agile Approach to Accelerator Design

— 1. Accelerator must be
Application 1

e configurable
/ Application 2
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SoC with a Coarse-Grained Reconfigurable Array

CGRA
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* Our accelerator is an
island-style CGRA

* Processing element
(PE) tiles — potentially
heterogeneous

* Memory (MEM) tiles

e Statically configured
interconnect

* Programmable, but
allows exploiting
parallelism and
locality



Software Compiler

Application Halide Program
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Halide Program for a
3x3 Convolution

Algorithm: é—» Output

RDom r(@, 3, 0, 3);
output(x, y) += input(x + r.x, y + r.y)
* weight(r.x, r.y)

Schedule:
input.in().store at(output, y) —
.compute at(output, x);

output.accelerate({input}, y); -
output.unroll(r.x).unroll(r.y); Scope of
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Software Compiler
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Deep Dive Talk 1: Connecting

Polyhedral Optimization to CGRA
Buffer Generation

Software Compiler
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Software compiler must evolve with hardware!

Application Halide Program

Lower - Hardware independent
CorelR Graph

-—

Map PE and
aK/Iemaor:'y € Depends on the PE and Memory hardware

Mapped CorelR Graph

CGRA €@ Depends on the interconnect hardware
Place & Route

CGRA Bitstream




Our Key Contribution

* Traditionally, designers create parameterized hardware generators
that communicate with the software compiler through configuration
files

* We create mini languages whose semantics are sufficiently expressive
to communicate both configuration values and how changes to those
values impact other layers in the system

* Our system has three mini-languages or domain-specific languages
(DSLs)

* PEak for PEs, Lake for memories, Canal for interconnect



Our DSL-based Hardware Generation and
Software Compilation Flow
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Our DSL-based Hardware Generation and
Software Compilation Flow
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Our DSL-based Hardware Generation and
Software Compilation Flow
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Our DSL-based Hardware Generation and
Software Compilation Flow
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Summary

 Domain-specific architectures that are specialized yet somewhat
programmable

* CGRAs specialized for different domains

* Compiler that compiles high-level programs in a domain-specific
language to our CGRA

 Start with a simple CGRA and create a working system, then make
incremental changes to it — creating an agile design flow

* As we incrementally evolve our CGRA hardware for changing
applications, our compiler tracks the hardware changes

* Design space exploration framework on top of our flow that let’s you
easily find the best CGRA architecture for your domain of interest



