
An AHA Perspective
Priyanka Raina

July 29, 2020



Motivation

• Digital design tools and methodology have improved dramatically 
letting us create large SoCs with billions of transistors

• But completing these designs (with software) 
• Takes years
• Costs hundreds of millions of dollars

Dozens of domain-specific processors or accelerators
Machine Learning
Image Processing
Video Coding
Cryptography 
Depth Processing

https://www.anandtech.
com/show/14892/the-
apple-iphone-11-pro-
and-max-review/2

A13 SoC
8.5 billion transistors 

7 nm

https://www.anandtech.com/show/14892/the-apple-iphone-11-pro-and-max-review/2


Waterfall Approach to Accelerator Design

• A waterfall approach is still used for most accelerator designs

Application
Analysis

ResNet
MobileNet

…

Architectural 
Specification

RTL Design 
and Test

Physical 
Design

Software / 
Compiler 

Design



Agile Approach to Accelerator Design
• We explore an agile hardware/software design flow
• Incrementally update the hardware accelerator and software to map to it

Base Hardware 
Accelerator v0

Compiler 
Toolchain v0

Application 1
Application 2

Power, 
Performance, 

Area

Base Hardware 
Accelerator v1

Compiler 
Toolchain v1

Incremental 
Updates

Application 2.1
Application 3 



Agile Approach to Accelerator Design
1. Accelerator must be 

configurable
• So we can map new or 

modified applications to it 
(although with lower 
efficiency)

2. Hardware and compiler 
must evolve together
• Any change in hardware 

must propagate to compiler 
automatically

Base Hardware 
Accelerator v0

Compiler 
Toolchain v0

Application 1
Application 2

Power, 
Performance, 

Area

Base Hardware 
Accelerator v1

Compiler 
Toolchain v1

Incremental 
Updates



SoC with a Coarse-Grained Reconfigurable Array
• Our accelerator is an 

island-style CGRA
• Processing element 

(PE) tiles – potentially 
heterogeneous
• Memory (MEM) tiles 
• Statically configured 

interconnect

• Programmable, but 
allows exploiting 
parallelism and 
locality

PE MEM PE MEM

PE MEM PE MEM

PE MEM PE MEM

PE MEM PE MEM

Sy
st

em
 In

te
rc

on
ne

ct

Gl
ob

al
 B

uf
fe

r

CPU

Instruction 
Cache

Data 
Cache

DMA 
Engines

CGRA



Software Compiler

Application Halide Program

Halide Program for a 
3x3 Convolution
Algorithm:
RDom r(0, 3, 0, 3);
output(x, y) += input(x + r.x, y + r.y)

* weight(r.x, r.y)

Schedule:
input.in().store_at(output, y)

.compute_at(output, x);
output.accelerate({input}, y);
output.unroll(r.x).unroll(r.y);

Memory 
hierarchy

Scope of 
accelerator

Which 
loops to 

parallelize

Loop tiling, 
ordering, 

fusion

output

input

F



Software Compiler

Lower

Application Halide Program

CoreIR Graph

Un
if
ie
d 
Bu

ff
er

output

Mul

Mul

Mul

Add
Add

Addinput

CoreIR Dataflow Graph 

.

.

.

.

.

.

...

.
.

.

CPU Code



Software Compiler

Lower

CPU CodeApplication Halide Program

CoreIR Graph

Map PE and 
Memory

Mapped CoreIR Graph

CGRA
Place & Route

CGRA Bitstream

MEM

output

PE

PE

PE

PE
PE

PE

Mapped CoreIR Graph 

.

.

.

.
.

.

Mapped Kernel

SRSR

SRSR

SRSR

MEM
Shift 

Registers

Mapped Memory

input

Deep Dive Talk 1: Connecting 
Polyhedral Optimization to CGRA 
Buffer Generation



Software compiler must evolve with hardware!

Lower

Application Halide Program

CoreIR Graph

Map PE and 
Memory

Mapped CoreIR Graph

CGRA
Place & Route

CGRA Bitstream

Depends on the PE and Memory hardware

Depends on the interconnect hardware

Hardware independent



Our Key Contribution

• Traditionally, designers create parameterized hardware generators 
that communicate with the software compiler through configuration 
files

• We create mini languages whose semantics are sufficiently expressive 
to communicate both configuration values and how changes to those 
values impact other layers in the system

• Our system has three mini-languages or domain-specific languages 
(DSLs)
• PEak for PEs, Lake for memories, Canal for interconnect



Our DSL-based Hardware Generation and 
Software Compilation Flow

PEak Compiler 

PE HW 
in Magma

CGRA Verilog

PEak Program
(PE spec)

Halide Compiler

CoreIR Graph

PE and MEM Mapper

Mapped CoreIR Graph

CGRA Bitstream

Place & Route Engine

Application
Halide Program

Magma Compiler

Rewrite 
Rules

Deep Dive Talk 2: A General Mapping Flow in an 
Agile Hardware World



Our DSL-based Hardware Generation and 
Software Compilation Flow

Lake CompilerPEak Compiler 

PE HW 
in Magma

CGRA Verilog

Lake Program
(MEM spec)

PEak Program
(PE spec)

Halide Compiler

CoreIR Graph

PE and MEM Mapper

Mapped CoreIR Graph

CGRA Bitstream

Place & Route Engine

Application
Halide Program

Magma Compiler

MEM HW 
in Magma

Rewrite 
Rules

Deep Dive Talk 4: Lake Memory Generator and SMT 
for Automated Memory Configuration



Our DSL-based Hardware Generation and 
Software Compilation Flow

Lake CompilerPEak Compiler 

PE HW 
in Magma

CGRA Verilog

Lake Program
(MEM spec)

PEak Program
(PE spec)

Halide Compiler

CoreIR Graph

PE and MEM Mapper

Mapped CoreIR Graph

CGRA Bitstream

Place & Route Engine

Application
Halide Program

Magma Compiler

MEM HW 
in Magma

Rewrite 
Rules

Deep Dive Talk 3: Formal Checkers and Solvers for 
Hardware Design and Verification



Our DSL-based Hardware Generation and 
Software Compilation Flow

Lake Compiler Canal CompilerPEak Compiler 

PE HW 
in Magma

CGRA Verilog

Routing 
Graph

Canal Program
(Interconnect spec)

Lake Program
(MEM spec)

PEak Program
(PE spec)

Halide Compiler

CoreIR Graph

PE and MEM Mapper

Mapped CoreIR Graph

CGRA Bitstream

Place & Route Engine

Application
Halide Program

Magma Compiler

MEM HW 
in Magma

Interconnect HW 
in Magma

Deep Dive Talk 5: Design Space Exploration of 
Processing Element Architectures



Summary

• Domain-specific architectures that are specialized yet somewhat 
programmable
• CGRAs specialized for different domains

• Compiler that compiles high-level programs in a domain-specific 
language to our CGRA
• Start with a simple CGRA and create a working system, then make 

incremental changes to it – creating an agile design flow
• As we incrementally evolve our CGRA hardware for changing 

applications, our compiler tracks the hardware changes
• Design space exploration framework on top of our flow that let’s you 

easily find the best CGRA architecture for your domain of interest 


