An AHA Perspective

Priyanka Raina

July 29, 2020

Stanford University

Motivation

* Digital design tools and methodology have improved dramatically
letting us create large SoCs with billions of transistors

Dozens of domain-specific processors or accelerators
Machine Learning
Image Processing

| Video Coding

B https://www.anandtech.

! com/show/14892/the- Cryptography

I 2pole-iphone-11-pro- Depth Processing

t ,
Bl 2nd-max-review/2

e But completing these designs (with software)

* Takes years
e Costs hundreds of millions of dollars

https://www.anandtech.com/show/14892/the-apple-iphone-11-pro-and-max-review/2

Waterfall Approach to Accelerator Design

* A waterfall approach is still used for most accelerator designs

Application
Analysis |

Architectural

ResNet
Specification |

MobileNet RTL Design
and Test |
Physical
Design T
Software /
Compiler

Design

Agile Approach to Accelerator Design

* We explore an agile hardware/software design flow

* Incrementally update the hardware accelerator and software to map to it

_—

Compiler
Toolchain vO

Application 2.1
Application 3

v

Base Hardware
Accelerator vO

S~

Application 1
Application 2 /
Compiler
Toolchain vl
4
Base Hardware
Accelerator v1
Power,
Performance, Incremental
Area

Updates

Agile Approach to Accelerator Design

— 1. Accelerator must be
Application 1

e configurable
/ Application 2

* SO we can map new or

Compiler Compiler modified applications to it
Toolchain vO Toolchain v1 (although with lower
T efficiency)
Base Hardware Base Hardware | 2. Hardware and compiler
Accelerator vO Accelerator v1 must evolve together
\ Power, / * Any change in hardware
Performance, must propagate to compiler
Area Incremental automatically
Updates

SoC with a Coarse-Grained Reconfigurable Array

CGRA
PE <= |MEM<{ . | PE <[|MEM<
CPU i A i A
e AN e AW e AT e 4
_'5 - L L : L} |
- Q PE <« MEM< PE < MEM<
Instruction = =
C a C h e 8 % T; \F””T T; ‘F””T Trirrr ‘F” Tirrr AF””}
= i | | = | i |
I3 o b et
c ©
Data E 2 PE < MEM< PE < MEM<
G i A i A
C a C h e "G-'J LD L AT” - AT””T - AT” - \AT””
:>)~ - b b b)
PE <« |- |MEM<{ . | PE <[|MEM<
DMA i A i A
Engines s A s A HE A HE ‘

* Our accelerator is an
island-style CGRA

* Processing element
(PE) tiles — potentially
heterogeneous

* Memory (MEM) tiles

e Statically configured
interconnect

* Programmable, but
allows exploiting
parallelism and
locality

Software Compiler

Application Halide Program

input

Halide Program for a
3x3 Convolution

Algorithm: é—» Output

RDom r(@, 3, 0, 3);
output(x, y) += input(x + r.x, y + r.y)
* weight(r.x, r.y)

Schedule:
input.in().store at(output, y) —
.compute at(output, x);

output.accelerate({input}, y); -
output.unroll(r.x).unroll(r.y); Scope of

Memory
hierarchy

accelerator

Loop tiling, Which
ordering, loops to
fusion parallelize

Software Compiler

Application Halide Program — CPU Code
Lower @
CorelR Graph @
input — .

. output

Unified Buffer

L] L] L]
))) @ @

CorelR Dataflow Graph

Deep Dive Talk 1: Connecting

Polyhedral Optimization to CGRA
Buffer Generation

Software Compiler

Application Halide Program — CPU Code
Lower @ @
CorelR Graph MEM @ @

Map PE and 1nput Shift ’ output
Memory . .

! MEM Registers

Mapped CorelR Graph

CGRA \ | |

Place & Route ! !
v Mapped Memory Mapped Kernel
CGRA Bitstream

Mapped CorelR Graph

Software compiler must evolve with hardware!

Application Halide Program

Lower - Hardware independent
CorelR Graph

-—

Map PE and
aK/Iemaor:'y € Depends on the PE and Memory hardware

Mapped CorelR Graph

CGRA €@ Depends on the interconnect hardware
Place & Route

CGRA Bitstream

Our Key Contribution

* Traditionally, designers create parameterized hardware generators
that communicate with the software compiler through configuration
files

* We create mini languages whose semantics are sufficiently expressive
to communicate both configuration values and how changes to those
values impact other layers in the system

* Our system has three mini-languages or domain-specific languages
(DSLs)

* PEak for PEs, Lake for memories, Canal for interconnect

Our DSL-based Hardware Generation and
Software Compilation Flow

Application

PEak Program Halide Program
(PE spec) l
l . .
PEak Compiler Halide Compiler
l l
PE HW Rewrite CorelR Graph
in Magma Rules l
\ PE and MEM Mapper
Magma Compiler l
l Mapped CorelR Graph
CGRA Verilog l
: : : Place & Route Engine
Deep Dive Talk 2: A General Mapping Flow in an]

Agile Hardware World CGRA Bitstream

Our DSL-based Hardware Generation and
Software Compilation Flow

Application
PEak Program Lake Program Halide Program
(PE spec) (MEM spec) l
; l lid il
PEak Compiler Lake Compiler Halide Clompl er
I } .
R t
PE HW MEM HW W CorelR Graph
, : Rules
in Magma In Magma l
\ l PE and MEM Mapper
Magma Compiler l
l Mapped CorelR Graph
CGRA Verilog l
- Place & Route Engine
Deep Dive Talk 4: Lake Memory Generator and SMT]

for Automated Memory Configuration CGRA Bitstream

Our DSL-based Hardware Generation and
Software Compilation Flow

Application
PEak Program Lake Program Halide Program
(PE spec) (MEM spec) l
' . . :
PEak Compiler Lake Compiler Halide Clompller
I } .
R t
PE HW MEM HW W CorelR Graph
, : Rules
in Magma In Magma l
\ l PE and MEM Mapper
Magma Compiler l
l Mapped CorelR Graph
CGRA Verilog l
- Place & Route Engine
Deep Dive Talk 3: Formal Checkers and Solvers for]

Hardware Design and Verification CGRA Bitstream

Our DSL-based Hardware Generation and
Software Compilation Flow

Application
PEak Program Lake Program Canal Program Halide Program
(PE spec) (MEM spec) (Interconnect spec) l
' ' v . :
PEak Compiler Lake Compiler Canal Compiler | Routing Halide Compiler
I] l Graph l
PE HW MEM HW Interconnect HW CorelR Graph
in Magma in Magma in Magma l
\ l / PE and MEM Mapper
Magma Compiler l
l Mapped CorelR Graph
CGRA Verilog l
- : : Place & Route Engine
Deep Dive Talk 5: Design Space Exploration of]

Processing Element Architectures CGRA Bitstream

Summary

 Domain-specific architectures that are specialized yet somewhat
programmable

* CGRAs specialized for different domains

* Compiler that compiles high-level programs in a domain-specific
language to our CGRA

 Start with a simple CGRA and create a working system, then make
incremental changes to it — creating an agile design flow

* As we incrementally evolve our CGRA hardware for changing
applications, our compiler tracks the hardware changes

* Design space exploration framework on top of our flow that let’s you
easily find the best CGRA architecture for your domain of interest

