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Motivation

• Digital design tools and methodology have improved dramatically 
letting us create large SoCs with billions of transistors

• But completing these designs (with software) 
• Takes years
• Costs hundreds of millions of dollars

Dozens of domain-specific processors or accelerators
Machine Learning
Image Processing
Video Coding
Cryptography 
Depth Processing

https://www.anandtech.
com/show/14892/the-
apple-iphone-11-pro-
and-max-review/2

A13 SoC
8.5 billion transistors 

7 nm

https://www.anandtech.com/show/14892/the-apple-iphone-11-pro-and-max-review/2


Waterfall Approach to Accelerator Design

• A waterfall approach is still used for most accelerator designs
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Agile Approach to Accelerator Design
• We explore an agile hardware/software design flow
• Incrementally update the hardware accelerator and software to map to it
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Agile Approach to Accelerator Design
1. Accelerator must be 

configurable
• So we can map new or 

modified applications to it 
(although with lower 
efficiency)

2. Hardware and compiler 
must evolve together
• Any change in hardware 

must propagate to compiler 
automatically
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SoC with a Coarse-Grained Reconfigurable Array
• Our accelerator is an 

island-style CGRA
• Processing element 

(PE) tiles – potentially 
heterogeneous
• Memory (MEM) tiles 
• Statically configured 

interconnect

• Programmable, but 
allows exploiting 
parallelism and 
locality
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Software Compiler

Application Halide Program

Halide Program for a 
3x3 Convolution
Algorithm:
RDom r(0, 3, 0, 3);
output(x, y) += input(x + r.x, y + r.y)

* weight(r.x, r.y)

Schedule:
input.in().store_at(output, y)

.compute_at(output, x);
output.accelerate({input}, y);
output.unroll(r.x).unroll(r.y);
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Software Compiler
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Software Compiler
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Deep Dive Talk 1: Connecting 
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Buffer Generation



Software compiler must evolve with hardware!
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Our Key Contribution

• Traditionally, designers create parameterized hardware generators 
that communicate with the software compiler through configuration 
files

• We create mini languages whose semantics are sufficiently expressive 
to communicate both configuration values and how changes to those 
values impact other layers in the system

• Our system has three mini-languages or domain-specific languages 
(DSLs)
• PEak for PEs, Lake for memories, Canal for interconnect



Our DSL-based Hardware Generation and 
Software Compilation Flow
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Our DSL-based Hardware Generation and 
Software Compilation Flow
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Our DSL-based Hardware Generation and 
Software Compilation Flow
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Our DSL-based Hardware Generation and 
Software Compilation Flow
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Summary

• Domain-specific architectures that are specialized yet somewhat 
programmable
• CGRAs specialized for different domains

• Compiler that compiles high-level programs in a domain-specific 
language to our CGRA
• Start with a simple CGRA and create a working system, then make 

incremental changes to it – creating an agile design flow
• As we incrementally evolve our CGRA hardware for changing 

applications, our compiler tracks the hardware changes
• Design space exploration framework on top of our flow that let’s you 

easily find the best CGRA architecture for your domain of interest 


