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What comes out of the Halide front end:
for r in [0, 63]:

for c in [0, 63]:
br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 
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This application has 2 stages: brighten 
and blur
for r in [0, 63]:

for c in [0, 63]:
br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 
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Read in a 64 x 64 input 
and brighten each pixel



This application has 2 stages: brighten 
and blur
for r in [0, 63]:

for c in [0, 63]:
br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4
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Produce a blurred 
version of the bright 
image by averaging 
together 2x2 squares



Compute mapping creates processing 
elements (PEs) for each stage 
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for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 

brighten 
PE

blur PE



But how do these PEs communicate?
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for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 

brighten 
PE

blur PE

??



Through Memory
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for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

Buffer

brighten 
PE



Problem 1: Optimizing memory capacity
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for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

Buffer

brighten 
PE

64 x 64 if program runs 
sequentially



Solution: Execute the loop nests in 
parallel as separate tasks
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for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

Buffer

brighten 
PE

But only 64 + 2 entries 
are needed if stages 
run in parallel



Problem 2: Bandwidth demands for most PEs 
are much higher than an SRAM can provide

13

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

Buffer

brighten 
PE



1 input / cycle and 4 outputs / cycle
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for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

Buffer
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PE



Typical solution in industrial hardware 
compilers: Give up and reduce throughput
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Typical solution in industrial hardware 
compilers: Give up and reduce throughput
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for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1] ) / 4 blur PE

SRAM

brighten 
PE

CTRL



Our solution: Use polyhedral analysis to 
generate a synthesizable, high bandwidth 
implementation
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for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

Buffer

brighten 
PE



But this is easier said than done...
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for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

Buffer

brighten 
PE



Important restriction: All memory access 
expressions are affine
for r in [0, 63]:

for c in [0, 63]:
br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4
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Important restriction: All memory access 
expressions are affine
We can use polyhedral analysis to design our memory optimizations!
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And many components of this problem have 
already been formulated in the polyhedral 
model
§ Re-scheduling operations for higher locality
§ Checking the legality of memory banking schemes
§ Performing storage folding
§ Introducing multi-level re-use buffers
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But mostly in other contexts...

§ Software optimization
§ HLS targeting FPGA / ASIC technology libraries with fine grained control and 

memory primitives (gates, LUTs, SRAM macros)
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How do we transform a high bandwidth buffer 
with a fixed, statically analyzable access 

pattern into hardware that can be 
implemented on our CGRA?
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An Application Memory

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 

Buffer
for br

1 input port

4 output ports



Unified buffer: channels between read and write

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 

Stmt 1 Iteration Domain
ND Polyhedron

Data Domain
ND Polyhedron

Stmt 2 Iteration Domain
ND Polyhedron

input Access Map

Output Access Map



Exhaustive banking : intersect the map

• Naïve banking
• Dual port sram

• Input -> output
• Intersect the range

B
2

B
0

B
1

B
3

switch

1 input port

4 output ports

Buffer
for br

1 input port



Statically analyze the channel dependency
Fuse the loop

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 

for r in [0, 63]:
for c in [0, 63]:
br[r, c] = 2*in[r, c]

if (r>0 && c>0)
out[c, r] =
¼*(br[r, c] + 
br[r , c + 1] +
br[r + 1, c ] +        
br[r + 1, c + 1]).    

Loop Fusion



Compute Dependence Distance(DD)
• Compute dependence distance after loop fusion

• For each bank, calculate the write has been made 
between the oldest and latest data

• It’s constant for all the 2x2 blur UBuffer banks

B2

B0 B1

B3

switch

for r in [0, 63]:
for c in [0, 63]:
br[r, c] = 2*in[r, c]

if (r>0 && c>0)
out[c, r] =
¼*(br[r, c] +           //DD = 0
br[r , c + 1] + //DD = 1
br[r + 1, c ] +        //DD = 64
br[r + 1, c + 1]).    //DD = 65

1 input port

4 output ports



Naïve Bank Merging

B2

B0 B1

B3

switch
1 input port 1 input port

4 output ports 4 output ports

Depth=1

Depth=63

Depth=1



Naïve Bank Merging
§Already address the two problems
§Still backend independent, non-optimal for the CGRA

B2

B0 B1

B3

switch
1 input port 1 input port

4 output ports 4 output ports

Depth=1

Depth=63

Depth=1



memory tile

routing 
network
Register

Backend Aware: Local Reuse / CGRA Routing

Depth=1

Depth=63

Depth=1

Depth=64

Depth=1



Backend Aware: Memory Tile Interface

M
em Mem

Dangling wire

Memory backend:
1 in port
1 out port 

Memory backend:
2 in ports
2 out ports 

Dangling wire



Backend Aware: Memory Tile Interface (3x3 blur)

M
em

M
em

Memory backend:
1 in port
1 out port 

Mem

Memory backend:
2 in ports
2 out ports 

Dangling wire



Split the Memtile: Chaining
§Memory Tile Internal Constraint
• Capacity = 1KB
• Decouple into multiple tiles if exceed

HW
Mem

Chain in



Look inside the Memtile: Wider fetch width
§Memory Tile Internal Constraint
• Fetch width = 4

HW
Mem

Agg SRA
M TB

• Compiler Transformation:  Vectorization and split loop nest
• 2 loop nest  & 1 buffer between
• 4 loop nests  & 3 buffers in between



More detail will be covered in the 
Memory deep dive talk
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Conclusion

§Accelerator push memory(Unified Buffer) can be modeled as 
dataflow channels between read and write

§Polyhedral analysis 
§ Optimized capacity 
§ Fulfill bandwidth requirements

§ In order to target a specific hardware backend, backend specific 
rewrite rules are proposed
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