
Connecting Polyhedral
Optimization to CGRA Buffer

Generation
Dillon Huff and Qiaoyi Liu

1

Hardware-Software Compiler Interaction

Low-Level DSLs

Lake: Memory Generator

Canal: Interconnect Generator

PEak: PE Generator

Magma (HDL)Fault (HVL)

Software CompilerHardware Compilers

CoreIR

CGRA Verilog

Rewrite
Rules

Routing
Graph

Lower

Map PE and
Memory

CPU CodeHalide

CoreIR

Mapped CoreIR

CGRA
Place & Route

CGRA Bitstream

Halide ProgramCanal ProgramLake ProgramPEak Program

Unified buffers: a hardware independent
memory abstraction

Halide

• Define applications
• Define Accelerator

domain and memory
hierarchy

Loop Nest

• It defines how data
flow between
statements(load
and store)

Unified Buffer

• Elaborate into
Polyhedral IR
• Iteration domain
• Access map
• Schedule

Memory Tile
Configuration

CoreIR
Topology Graph+

Backend Memory
Constraints

Hardware
Rewrites

Halide2Hardware Buffer Extraction

Unified buffers: a hardware independent
memory abstraction

Halide

• Define applications
• Define Accelerator

domain and memory
hierarchy

Loop Nest

• It defines how data
flow between
statements(load
and store)

Unified Buffer

• Elaborate into
Polyhedral IR
• Iteration domain
• Access map
• Schedule

Memory Tile
Configuration

CoreIR
Topology Graph+

Backend Memory
Constraints

Hardware
Rewrites

Halide2Hardware Buffer Extraction

What comes out of the Halide front end:
for r in [0, 63]:

for c in [0, 63]:
br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4

5

This application has 2 stages: brighten
and blur
for r in [0, 63]:

for c in [0, 63]:
br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4

6

Read in a 64 x 64 input
and brighten each pixel

This application has 2 stages: brighten
and blur
for r in [0, 63]:

for c in [0, 63]:
br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4

7

Produce a blurred
version of the bright
image by averaging
together 2x2 squares

Compute mapping creates processing
elements (PEs) for each stage

8

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4

brighten
PE

blur PE

But how do these PEs communicate?

9

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4

brighten
PE

blur PE

??

Through Memory

10

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

Buffer

brighten
PE

Problem 1: Optimizing memory capacity

11

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

Buffer

brighten
PE

64 x 64 if program runs
sequentially

Solution: Execute the loop nests in
parallel as separate tasks

12

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

Buffer

brighten
PE

But only 64 + 2 entries
are needed if stages
run in parallel

Problem 2: Bandwidth demands for most PEs
are much higher than an SRAM can provide

13

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

Buffer

brighten
PE

1 input / cycle and 4 outputs / cycle

14

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

Buffer

brighten
PE

Typical solution in industrial hardware
compilers: Give up and reduce throughput

15

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

SRAM

brighten
PE

CTRL

Typical solution in industrial hardware
compilers: Give up and reduce throughput

16

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

SRAM

brighten
PE

CTRL

Typical solution in industrial hardware
compilers: Give up and reduce throughput

17

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

SRAM

brighten
PE

CTRL

Typical solution in industrial hardware
compilers: Give up and reduce throughput

18

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

SRAM

brighten
PE

CTRL

Typical solution in industrial hardware
compilers: Give up and reduce throughput

19

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

SRAM

brighten
PE

CTRL

Typical solution in industrial hardware
compilers: Give up and reduce throughput

20

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

SRAM

brighten
PE

CTRL

Our solution: Use polyhedral analysis to
generate a synthesizable, high bandwidth
implementation

21

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

Buffer

brighten
PE

But this is easier said than done...

22

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4 blur PE

Buffer

brighten
PE

Important restriction: All memory access
expressions are affine
for r in [0, 63]:

for c in [0, 63]:
br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4

23

Important restriction: All memory access
expressions are affine
We can use polyhedral analysis to design our memory optimizations!

24

And many components of this problem have
already been formulated in the polyhedral
model
§ Re-scheduling operations for higher locality
§ Checking the legality of memory banking schemes
§ Performing storage folding
§ Introducing multi-level re-use buffers

25

But mostly in other contexts...

§ Software optimization
§ HLS targeting FPGA / ASIC technology libraries with fine grained control and

memory primitives (gates, LUTs, SRAM macros)

26

How do we transform a high bandwidth buffer
with a fixed, statically analyzable access

pattern into hardware that can be
implemented on our CGRA?

Unified buffer: a hardware independent
memory abstraction

Halide

• Define applications
• Define Accelerator

domain and memory
hierarchy

Loop Nest

• It defines how data
flow between
statements(load
and store)

Unified Buffer

• Elaborate into
Polyhedral IR
• Iteration domain
• Access map
• Schedule

Memory Tile
Configuration

CoreIR
Topology Graph+

Backend Memory
Constraints

Hardware
Rewrites

Halide2Hardware Buffer Extraction

An Application Memory

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4

Buffer
for br

1 input port

4 output ports

Unified buffer: channels between read and write

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4

Stmt 1 Iteration Domain
ND Polyhedron

Data Domain
ND Polyhedron

Stmt 2 Iteration Domain
ND Polyhedron

input Access Map

Output Access Map

Exhaustive banking : intersect the map

• Naïve banking
• Dual port sram

• Input -> output
• Intersect the range

B
2

B
0

B
1

B
3

switch

1 input port

4 output ports

Buffer
for br

1 input port

Statically analyze the channel dependency
Fuse the loop

for r in [0, 63]:
for c in [0, 63]:

br[r, c] = 2*in[r, c]

for r in [0, 62]:
for c in [0, 62]:

out[c, r] =
(br[r, c] + br[r + 1, c] +
br[r, c + 1] + br[r + 1, c + 1]) / 4

for r in [0, 63]:
for c in [0, 63]:
br[r, c] = 2*in[r, c]

if (r>0 && c>0)
out[c, r] =
¼*(br[r, c] +
br[r , c + 1] +
br[r + 1, c] +
br[r + 1, c + 1]).

Loop Fusion

Compute Dependence Distance(DD)
• Compute dependence distance after loop fusion

• For each bank, calculate the write has been made
between the oldest and latest data

• It’s constant for all the 2x2 blur UBuffer banks

B2

B0 B1

B3

switch

for r in [0, 63]:
for c in [0, 63]:
br[r, c] = 2*in[r, c]

if (r>0 && c>0)
out[c, r] =
¼*(br[r, c] + //DD = 0
br[r , c + 1] + //DD = 1
br[r + 1, c] + //DD = 64
br[r + 1, c + 1]). //DD = 65

1 input port

4 output ports

Naïve Bank Merging

B2

B0 B1

B3

switch
1 input port 1 input port

4 output ports 4 output ports

Depth=1

Depth=63

Depth=1

Naïve Bank Merging
§Already address the two problems
§Still backend independent, non-optimal for the CGRA

B2

B0 B1

B3

switch
1 input port 1 input port

4 output ports 4 output ports

Depth=1

Depth=63

Depth=1

memory tile

routing
network
Register

Backend Aware: Local Reuse / CGRA Routing

Depth=1

Depth=63

Depth=1

Depth=64

Depth=1

Backend Aware: Memory Tile Interface

M
em Mem

Dangling wire

Memory backend:
1 in port
1 out port

Memory backend:
2 in ports
2 out ports

Dangling wire

Backend Aware: Memory Tile Interface (3x3 blur)

M
em

M
em

Memory backend:
1 in port
1 out port

Mem

Memory backend:
2 in ports
2 out ports

Dangling wire

Split the Memtile: Chaining
§Memory Tile Internal Constraint
• Capacity = 1KB
• Decouple into multiple tiles if exceed

HW
Mem

Chain in

Look inside the Memtile: Wider fetch width
§Memory Tile Internal Constraint
• Fetch width = 4

HW
Mem

Agg SRA
M TB

• Compiler Transformation: Vectorization and split loop nest
• 2 loop nest & 1 buffer between
• 4 loop nests & 3 buffers in between

More detail will be covered in the
Memory deep dive talk

41

Conclusion

§Accelerator push memory(Unified Buffer) can be modeled as
dataflow channels between read and write

§Polyhedral analysis
§ Optimized capacity
§ Fulfill bandwidth requirements

§ In order to target a specific hardware backend, backend specific
rewrite rules are proposed

42

