Formal Checkers and Solvers for Hardware Design and Verification

Part 1
P()Il() : Makai Mann
Ahmed Irfan
Performant, Adaptable, and Extensible ~ Jérentonsine

SM'T-based Model Checking Clark Barrett

Formal Verification

Reuters | Elijah Nouvelage

* Expensive or safety-critical failures

* Principled, exhaustive coverage

Model Checking

System Expected

Description Behavior
S @
\ Model Checker /

SE @

Safe Unsafe
+ invariant + witness

Model Checking

System Expected

Description Behavior
S @
\ Model Checker /

SE @

Safe Unsafe

+ invariant + witness

Some Directions for Model Checking

« Lift to Satisfiability Modulo Theories (SMT)
* New model checking algorithms

* Automatic / manual abstraction refinement approaches

Why SMT?

* Maintains structure of problem
“ Abstractions with dedicated reasoning (e.g. arrays for memories)

* Quantified reasoning

+ Two directions:

+ Faster SMT solvers

+ Better use of SMT solvers

W

WU RIS

/
)
o h
¥y E
- AM g

3
(e kv,
ﬂ U
= c
o e
0
S
S
S o
a& (&)
= =
it -
0 O
M <
N 5
= =
2 =
c Rele
g =
o 3
= @)
D
= 5
O .
) R

N/
%
N/
0.0

Solver-agnostic Model Checker

* Solvers have different strengths
* New developments every year (showcased at SMT-COMP)
* Supporting multiple solvers good for:

* Portfolio approaches

« Utilizing union of supported features/strengths

Pono in AHA

* Property Checking + integration with Fault

* Lake mapping (up next!)

¢ AQED

+ Future Uses:

* Counter abstraction
* SyGusS for rewriting

+ ...and more!

High Level Goals of Pono

* Performant
* Adaptable

+ Extensible

Performant

* Competitive implementations of standard model checking algorithms
+ BMC
* BMC + simple path
“+ K-Induction
* Interpolant-based

* IC3 (in progress)

Performant

Favorable performance compared to CoSA

Competed as “Cosa2" in Hardware Model Checking Competition 2019

Results

In the SINGLE bit-vector track the top three places are:

SpPOoNsSors

1. AVR
Aman Goel, Karem Sakallah (University of Michigan)

O Y/ > 2. CoSA2

e Makai Mann, Ahmed Irfan, Florian Lonsing, Clark Barrett (Stanford University)
3. CoNPS-btormc-THP

Norbert Manthey (hobbyist, former postdoc @ TU Dresden)

J z U In the SINGLE bit-vector+array track the top three places are:
1. CoSA2
Makai Mann, Ahmed Irfan, Florian Lonsing, Clark Barrett (Stanford University)
2. AVR
FLLIF Aman Goel, Karem Sakallah (University of Michigan)
3. CoNPS-btormc-THP
Der Wissenschaftsfonds. Norbert Manthey (hobbyist, former postdoc @ TU Dresden)
Oski Award

CoSA2 for solving the largest number of benchmarks overall.

Adaptable
= dh .

+ Limitations of a black box

* Translation step very important
* Not always easily reducible to invariant checking
“ Integrated verification — not a new idea, but hard to do right in practice

* Flexible API for solving diverse problems

: :Bmc(const & solver) : super(p, solver)

® S
I l: t | 1 initialize();
X enSI e : :Bmc(const & opt, const i & solver)

: super(opt, p, solver)

initialize

::~Bme() {}
::initialize()
-2 : iinitiali ;
Adaptablllty for users solver_i:siri?ormula unroller_.at_time(ts_.init(),
: :check _until(k)

i p 1 <= K) ++1

Extensibility for developers AT IR A

::step(i)

if (i <= reached_k_

recurn

Infrastructure

res =
= so{er_—>assert_formula{unroller_.at_time(ts_.trans[J, i =1
([
Open-source and simple o

solver_—>assert_formula(unroller_.at_time(bad_, 1));
r = solver_—>check_sat
if (r.is_sat()

Serve as a research platform for experts

gdiger_—>popﬁl;

++reached_k_;

return res,

Demo

* Checking invariant of memory with a predicate over all stored data

+ SMT abstractions
* Represent memory with an array
* Quantifiers
* Uninterpreted function to represent an arbitrary predicate

* (Could also abstract index using unbounded integers)

Next Up: SMT Improvements

