
Pono:
Performant, Adaptable, and Extensible

SMT-based Model Checking

Makai Mann
Ahmed Irfan
Florian Lonsing
Yahan Yang
Clark Barrett

Formal Checkers and Solvers for Hardware Design and Verification
Part I

Formal Verification
❖ Expensive or safety-critical failures

❖ Principled, exhaustive coverage

❖

Reuters | Elijah Nouvelage

Model Checking

Model Checker
S ⊧ ϕ

System
Description

S

Expected
Behavior

ϕ

Safe
+ invariant

Unsafe
+ witness

Model Checking

Model Checker
S ⊧ ϕ

System
Description

S

Expected
Behavior

ϕ

Safe
+ invariant

Unsafe
+ witness

…

Some Directions for Model Checking

❖ Lift to Satisfiability Modulo Theories (SMT)

❖ New model checking algorithms

❖ Automatic / manual abstraction refinement approaches

Why SMT?
❖ Maintains structure of problem

❖ Abstractions with dedicated reasoning (e.g. arrays for memories)

❖ Quantified reasoning

❖ Two directions:

❖ Faster SMT solvers

❖ Better use of SMT solvers

Pono

❖ Solver-agnostic SMT-based Model Checker

❖ “Pono”: right, correct, moral

Solver-agnostic Model Checker
❖ Solvers have different strengths

❖ New developments every year (showcased at SMT-COMP)

❖ Supporting multiple solvers good for:

❖ Portfolio approaches

❖ Utilizing union of supported features/strengths

Pono in AHA
❖ Property Checking + integration with Fault

❖ Lake mapping (up next!)

❖ AQED

❖ Future Uses:

❖ Counter abstraction

❖ SyGuS for rewriting

❖ …and more!

High Level Goals of Pono

❖ Performant

❖ Adaptable

❖ Extensible

Performant

❖ Competitive implementations of standard model checking algorithms

❖ BMC

❖ BMC + simple path

❖ K-Induction

❖ Interpolant-based

❖ IC3 (in progress)

Performant
❖ Favorable performance compared to CoSA

❖ Competed as “Cosa2" in Hardware Model Checking Competition 2019

❖

Adaptable

❖ Limitations of a black box

❖ Translation step very important

❖ Not always easily reducible to invariant checking

❖ Integrated verification — not a new idea, but hard to do right in practice

❖ Flexible API for solving diverse problems

Problem Invariant CheckingTranslation

Extensible

❖ Adaptability for users

❖ Extensibility for developers

❖ Infrastructure

❖ Open-source and simple

❖ Serve as a research platform for experts

Demo
❖ Checking invariant of memory with a predicate over all stored data

❖ SMT abstractions

❖ Represent memory with an array

❖ Quantifiers

❖ Uninterpreted function to represent an arbitrary predicate

❖ (Could also abstract index using unbounded integers)

Next Up: SMT Improvements

