PE Design Space Exploration

Jackson Melchert, Kathleen Feng, Caleb Donovick, Ross Daly

Motivation

How can we generate an optimal CGRA architecture for a specific application domain?

- 1. Analyze application domain benchmarks to find possible optimizations
- 2. Explore PE design space utilizing PEak DSL
- 3. Automatically generate full compiler to run applications
- 4. Find optimal architecture given evaluation results

Application Analysis

- How do we identify candidate PEs that explore the design space?
- Frequent subgraph analysis:
 - 1. Given a Halide application, generate the CorelR graph
 - 2. Enumerate frequent subgraphs within the CorelR graph

Frequent Subgraphs of Conv 3x3

Frequent Subgraphs of Conv 3x3

Frequent Subgraphs of Conv 3x3

Maximal Independent Set Analysis

For each subgraph:

- 1. Represent each occurence of that subgraph as a node in a new graph
- 2. Add an edge between nodes if the subgraph occurrences overlap
- 3. Calculate the maximal independent set

What next?

- Do transformation passes on subgraphs to explore design space
 - Add muxes
 - Remove inputs using constant registers
 - Route more operation outputs to PE outputs
 - Add operations that don't exist in subgraph

What next?

- Do transformation passes on subgraphs to explore design space
 - Add muxes
 - Remove inputs using constant registers
 - Route more operation outputs to PE outputs
 - Add operations that don't exist in subgraph
- Merge many interesting subgraphs
 - Enables better coverage of application graphs
 - Intelligently explores the connectivity design space axis
 - Allows for more effectively analyzing multiple applications

Merging Subgraphs

Dataflow graph merging:

- 1. Create a mapping between nodes of the same operation in both subgraphs
- 2. Create a "compatibility graph"
- 3. Find the maximum weight clique of this compatibility graph
- 4. Finally reconstruct the resulting merged graph

Subgraph Merging Benefits

- Allows for exploration of the design space by tuning how many subgraphs are merged
- Can efficiently map to multiple applications at once
- Scales well to large number of subgraphs
 - Much faster than maximal independent set analysis
- Can also output rewrite rules for mapping purposes

Experimental Results - Baseline

- Can do every primitive operation
- Only 1 operation per PE
- Has expensive multiplier regardless of application

Experimental Results - Baseline

- Energy per operation
 - 0.6ns clock period
 - Post-synthesis

Const	11.76 fJ
Add	1.44 pJ
Multiply	1.43 pJ

Experimental Results

• Specialized for 3x3 convolution:

in1 + (in0 * const0) + (in2 * const1) + (in3 * const2)

- Also implements every baseline PE op
- Can replace each ALU with just an adder for further specialization

Experimental Results

PE	Frequency	Area (µm²)	# PEs	Net Area
Baseline	1.66 GHz	956.97	18	17225.46
Specialized - 3 alu	1.11 GHz	3479.96	4	13919.84
Specialized - 1 alu 2 adders	1.11 GHz	1553.48	4	6213.92
Specialized - 3 adder	1.11GHz	1220.26	4	4881.04

Experimental Results - Energy per Convolution

Total Energy for 3x3 Convolution

More Specialized PEs - Harris Corner Detection

- Bit operations implemented on 3 input LUT
- PE inputs can be selected using the dynamic mux mux

More Specialized PEs - Camera Pipeline

- Camera pipeline has 17 unique operations
- Also implements any 3 input chained ALU operation

More Specialized PEs

- Specialized for:
 - Camera Pipeline
 - Harris
 - 3x3 Convolution
- Implements multiply-ALU operations
- Also can do 3 input chained ALU operations

Summary

- Goal: Generate optimized PE architectures for an application domain
- Generated candidate PEs by analyzing applications using:
 - Frequent subgraph mining
 - Maximal independent set analysis
 - Subgraph merging
- Demonstrated energy, area, and performance benefits of specialized PEs vs baseline simple PE

Results (0.9ns), pJ/cycle, post DC

3mul2alu1add: 3mul4add:1.64e-03*0.9ns=1.476pJ add:1.12e-03*0.9ns=1.008pJ const:2.13e-07*0.9ns=0.1917fJ (this is all leakage energy, same for the other PEs below) mul:1.83e-03*0.9ns=1.647pJ

3mul3alu: 3mul4add:4.31e-03*0.9ns=3.879pJ add:2.26e-03*0.9ns=2.034pJ const:6.95e-07*0.9ns=0.6255fJ mul:4.55e-03*0.9ns=4.095pJ

3mul4add: 3mul4add:1.12e-03*0.9ns=1.008pJ add:7.22e-04*0.9ns=0.6498pJ const:1.34e-07*0.9ns=0.1206fJ mul:1.29e-03*0.9ns=1.161pJ

lassen-no-fp: add:2.40e-03*0.6ns=1.44pJ const:1.96e-05*0.6ns=11.76fJ mul:2.38e-03*0.6ns=1.43pJ