
PE Design Space 
Exploration

Jackson Melchert, Kathleen Feng, 
Caleb Donovick, Ross Daly



Motivation

How can we generate an optimal CGRA architecture for a specific 
application domain?

1. Analyze application domain benchmarks to find possible 
optimizations

2. Explore PE design space utilizing PEak DSL
3. Automatically generate full compiler to run applications
4. Find optimal architecture given evaluation results



Design Space Axes



Application Analysis

● How do we identify candidate PEs that explore the design space?

● Frequent subgraph analysis:
1. Given a Halide application, generate the CoreIR graph
2. Enumerate frequent subgraphs within the CoreIR graph



Frequent Subgraphs of Conv 3x3



Frequent Subgraphs of Conv 3x3



Frequent Subgraphs of Conv 3x3



Maximal Independent Set Analysis

For each subgraph:

1. Represent each occurence of that subgraph as a node in a new graph
2. Add an edge between nodes if the subgraph occurrences overlap
3. Calculate the maximal independent set



Maximal Independent Set Analysis Example



Maximal Independent Set Analysis Example



Maximal Independent Set Analysis Example



Maximal Independent Set Analysis Example



Maximal Independent Set Analysis Example



Maximal Independent Set Analysis Example



Maximal Independent Set Analysis Example



Maximal Independent Set Analysis Example



Maximal Independent Set Analysis Example



What next?

● Do transformation passes on subgraphs to explore design space
● Add muxes 
● Remove inputs using constant registers
● Route more operation outputs to PE outputs
● Add operations that don’t exist in subgraph



What next?

● Do transformation passes on subgraphs to explore design space
● Add muxes 
● Remove inputs using constant registers
● Route more operation outputs to PE outputs
● Add operations that don’t exist in subgraph

● Merge many interesting subgraphs
● Enables better coverage of application graphs
● Intelligently explores the connectivity design space axis
● Allows for more effectively analyzing multiple applications



What do frequent subgraphs look like?



Merging Subgraphs

Dataflow graph merging:

1. Create a mapping between nodes of the same operation in both 
subgraphs

2. Create a “compatibility graph”
3. Find the maximum weight clique of this compatibility graph
4. Finally reconstruct the resulting merged graph















Subgraph Merging Benefits

● Allows for exploration of the design space by tuning how many 
subgraphs are merged

● Can efficiently map to multiple applications at once
● Scales well to large number of subgraphs

● Much faster than maximal independent set analysis
● Can also output rewrite rules for mapping purposes



● Can do every primitive operation
● Only 1 operation per PE
● Has expensive multiplier 

regardless of application

Experimental Results - Baseline



● Energy per operation
● 0.6ns clock period
● Post-synthesis

Experimental Results - Baseline

Const 11.76 fJ

Add 1.44 pJ

Multiply 1.43 pJ



Experimental Results

● Specialized for 3x3 convolution:

in1 + (in0 * const0) + (in2 * const1) + (in3 * const2)

● Also implements every baseline PE op
● Can replace each ALU with just an adder 

for further specialization



Experimental Results

3 ALU 1 ALU 2 adders 3 adders

Const 0.626 fJ 0.192 fJ 0.121 fJ

3 x Multiply-Add 3.88 pJ 1.48 pJ 1.01 pJ

● Energy per operation
● 0.9 ns max path delay
● Post-synthesis



Experimental Results

PE Frequency Area (μm2) # PEs Net Area

Baseline 1.66 GHz 956.97 18 17225.46

Specialized - 3 alu 1.11 GHz 3479.96 4 13919.84

Specialized - 1 alu 2 adders 1.11 GHz 1553.48 4 6213.92

Specialized - 3 adder 1.11GHz 1220.26 4 4881.04



Experimental Results - Energy per Convolution



More Specialized PEs - Harris Corner Detection

● Bit operations implemented on 
3 input LUT

● PE inputs can be selected using 
the dynamic mux 



More Specialized PEs - Camera Pipeline

● Camera pipeline has 17 unique 
operations

● Also implements any 3 input 
chained ALU operation



More Specialized PEs

● Specialized for:
● Camera Pipeline
● Harris
● 3x3 Convolution

● Implements multiply-ALU 
operations

● Also can do 3 input chained 
ALU operations



Summary
● Goal: Generate optimized PE architectures for an application domain
● Generated candidate PEs by analyzing applications using:

● Frequent subgraph mining
● Maximal independent set analysis
● Subgraph merging

● Demonstrated energy, area, and performance benefits of specialized PEs vs 
baseline simple PE



Results (0.9ns), pJ/cycle, post DC
3mul2alu1add:
3mul4add:1.64e-03*0.9ns=1.476pJ
add:1.12e-03*0.9ns=1.008pJ
const:2.13e-07*0.9ns=0.1917fJ (this is all leakage energy, same for the other PEs below)
mul:1.83e-03*0.9ns=1.647pJ

3mul3alu:
3mul4add:4.31e-03*0.9ns=3.879pJ
add:2.26e-03*0.9ns=2.034pJ
const:6.95e-07*0.9ns=0.6255fJ
mul:4.55e-03*0.9ns=4.095pJ

3mul4add:
3mul4add:1.12e-03*0.9ns=1.008pJ
add:7.22e-04*0.9ns=0.6498pJ
const:1.34e-07*0.9ns=0.1206fJ
mul:1.29e-03*0.9ns=1.161pJ

lassen-no-fp:
add:2.40e-03*0.6ns=1.44pJ
const:1.96e-05*0.6ns=11.76fJ
mul:2.38e-03*0.6ns=1.43pJ


