
Unlocking Scalable QED with

Design for Verification

Stanford Agile Hardware Retreat
August 26, 2021

Clark Barrett
(Joint work with Subhasish Mitra)

ALL TEMPLATE LAYOUT OPTIONS CAN BE FOUND
USING THE “INSERT” TAB AND CHOOSING
“NEW SLIDE” DROPDOWN BOX IN PPT.

Template layout options

Slide from DARPA CRAFT proposer’s day

Verification Dominates Design Time

Design Pre-silicon
Verification

Post-silicon
Validation

High
Volume

Fab

Pre-Silicon Verification Inadequate

Source: Intel 3

Post-silicon
bug count

Year

Getting worse: custom hardware, complexity, security

4

Scalability Barriers
l System-level failure reproduction

l Full system simulation

J. Stinson (ex-Intel)

5

Traditional Bounded Model Checking

Design Property

BMC Tool: Bound = k

∃ program of length ≤ k

Property violated ?

Bug found

6

“Universal” Property: QED Check

CMP Ra == Ra’

l Ra – original register

l Ra’ – corresponding duplicated register

l Ra ≠ Ra’ – error detected

Symbolic QED Implementation

7

Design + QED Module

Model checker: Bound = k

QED program length ≤ k that fails ?

Instructions

QED Module: no hardware cost

R1 ← R1 + 5
R2 ← R2 – R1

Chosen by
Model checker

R1 ← R1 + 5
R2 ← R2 - R1
R16 ← R16 + 5
R18 ← R18 – R16
(R1 == R16)⋀
(R2 == R18)

QED
Module

Interleavings
covered

Checked by
Model checker

[Lin ITC 15, Singh IEEE TCAD 18]

Alternative Implementation

8

R1 ← R1 + 5
R2 ← R2 – R1

Chosen by
Model checker

R1 ← R1 + 5
R2 ← R2 - R1
R16 ← R16 + 5
R18 ← R18 – R16
(R1 == R16)⋀
(R2 == R18)

QED
Module

Interleavings
covered

Checked by
Model checker

[Lonsing, FMCAD ‘20]

Reset
R1 ← R1 + 5
R2 ← R2 - R1
Checkpoint C
Reset
R1 ← R1 + 5
Soft Reset
R2 ← R2 – R1
(R1@C == R1)⋀
(R2@C == R2)

9

How To Implement?

l Checkpoint

lFormal tool has simultaneous view of all time steps

l Soft Reset (Requires Design Support)

lReset microarchitectural state but leave

architectural state unchanged

l Strong Correctness Guarantees

lBut Scalability still an Issue

Symbolic Starting States

10

R1 ← R1 + 5
R2 ← R2 – R1

Chosen by
Model checker

R1 ← R1 + 5
R2 ← R2 - R1
R16 ← R16 + 5
R18 ← R18 – R16
(R1 == R16)⋀
(R2 == R18)

QED
Module

Interleavings
covered

Checked by
Model checker

Symbolic State S1
R1 ← R1 + 5
R2 ← R2 - R1
Checkpoint C
Symbolic State S2
R1 ← R1 + 5
Soft Reset
R2 ← R2 – R1
(Arch@S1 == Arch@S2) ->
(R1@C == R1)⋀
(R2@C == R2)

11

How To Implement?

l Arch@S1 == Arch@S2

lFormal tool has simultaneous view of all time steps

lDesigns need to have clean separation of

architectural/non-architectural state

l Symbolic State

lWhat about invalid/unreachable states?

lCan we make designs that are QED-compatible,

even for invalid states?

A-QED for Hardware Accelerators

12

1. Loosely-coupled accelerators

2. Non-interfering execution

Ongoing work: expand A-QED for other classes

[Singh, DAC ‘20, Chattopadhyay, FMCAD ‘21]

Loosely Coupled Accelerators

13

LCA

System-on-Chip (SoC)

Memory

On-chip network

Offload heavy tasks

Processo
r

Core

Non-Interfering LCAs

14

Non-interfering accelerators ≠ combinational circuits

Value of independent of any other inputs

On
LCA
f()

LCA… … … …In Ij I2 I1 Oj O2 O1

= f()∀ j, IjOj

Oj

Functional Consistency
Original Duplicate

Non-interfering
LCA

If == :

==Check

15

… …In I3 I2 I1

I1 In

O3 O2 O1On

O1 On

Functional Consistency

16

∀ possible interleavings of Original Duplicate

Non-interfering
LCA

… …In I3 I2 I1 O3 O2 O1On

Non-interfering
LCA

… …In I3 I2 I1 O3 O2 O1On

Non-interfering
LCA

… …In I3 I2 I1 O3 O2 O1On

…

LCA Example

Ø 3 internal queues, 3 execution units
17

clock_enable
f(x)

Output
f(x
)

f(x)

Input

Queue 3

Queue 1

Queue 2

clock_enable
f(x)

Output
f(x
)

f(x)

Input

Queue 3

Queue 3

Queue 1

I12 I9 I6 I3

I10 I7 I4 I1

I11 I8 I5 I2

O6

O1

O2 O1O2

1

O6
Queue 2

l Bug: Queue 3 always enabled

Ø pushed to f(x) but not latched

18

Bug Example

I3

Ø produced instead ofO6 O3

I2 I1

A-QED: Functional Consistency

clock_enable
f(x)

Output
f(x
)

f(x)

Input

Queue 3

Queue 1

I1

If I1 = I3: expect f(I1) = f(I3)
19

1

I1

I2

I3

Queue 2

Functional Consistency Example Original Duplicate

I2I3

f(x
)

I11 I8 I5

clock_enable
f(x)

Output

f(x)

Input

Queue 3

Queue 1

I12 I9 I6 I3

I10 I7 I4 I1

O6

O1

O1O2

A-QED: Functional Consistency

O6O1 ≠I1 ≠ I6,
therefore

BUG DETECTED
20

O6I2 O2
Queue 2

1

A-QED Setup

CHECK: O1 = Ok

If I1 =
Ik

For pre-silicon verification only

21

Fo
rm

al
 V

er
ifi

ca
tio

n
To

ol

B
ou

nd
ed

 M
od

el
 C

he
ck

in
g

A-QED
Module Accelerator

Original Duplicate

I1I2Ik …

∀ possible sequences

I1I2Ik …

O1 O
2

Ok
…

22

Need For Decomposition

• General challenge: A-QED scalability limited by large design sizes.

• Compositional verification: check correctness of sub-modules.

• Traditional techniques: complex setup, assumptions, properties.

A-QED2: A-QED with Decomposition

23

• Functional consistency is inherently compositional

• Designs consist of functional sub-modules: sub-accelerators

• Sub-accelerators produce partial outputs

• Functional decomposition of Acc in Acc1 and Acc2:

• Input I and output O of Acc

• I = I1 → Acc1 → O1 = I2 → Acc2 → O2= O

[Chattopadhyay, FMCAD ‘21]

A-QED2: A-QED with Decomposition

24

• Unique Design for Verification opportunity

• support A-QED2 design decomposition

• Break computation into chunks, vertically or horizontally

• Potential integration in HLS workflows

• Decomposition difficult for conventional formal verification

• Need to rethink properties (manually), false fails

Design for Verification

l How ready are designers to prioritize verification above
other goals?
§How do we better trade-off between verification goals

and other goals?
§How important is DfV in an agile design flow?

l Where are the sweet spots? Big ROI?
§Making a design that decomposes easily
§Adding soft-reset capabilities
§Adding logic to simplify reasoning about symbolic

starting states

25

THANK YOU

26

