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Design Pre-silicon
Verification

Post-silicon
Validation

High 
Volume

Fab

Pre-Silicon Verification Inadequate

Source: Intel 3

Post-silicon 
bug count

Year

Getting worse: custom hardware, complexity, security
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Scalability Barriers
l System-level failure reproduction

l Full system simulation

J. Stinson (ex-Intel)
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Traditional Bounded Model Checking

Design Property 

BMC Tool: Bound = k

∃ program of length ≤ k

Property violated ?

Bug found
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“Universal” Property: QED Check

CMP Ra == Ra’

l Ra – original register

l Ra’ – corresponding duplicated register

l Ra ≠ Ra’ – error detected



Symbolic QED Implementation
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Design + QED Module

Model checker: Bound = k

QED program length ≤ k that fails ?

Instructions

QED Module: no hardware cost

R1 ← R1 + 5
R2 ← R2 – R1

Chosen by 
Model checker

R1 ← R1 + 5
R2 ← R2 - R1
R16 ← R16 + 5
R18 ← R18 – R16
(R1 == R16)⋀
(R2 == R18)

QED 
Module

Interleavings
covered

Checked by 
Model checker

[Lin ITC 15, Singh IEEE TCAD 18]



Alternative Implementation
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R1 ← R1 + 5
R2 ← R2 – R1

Chosen by 
Model checker

R1 ← R1 + 5
R2 ← R2 - R1
R16 ← R16 + 5
R18 ← R18 – R16
(R1 == R16)⋀
(R2 == R18)

QED 
Module

Interleavings
covered

Checked by 
Model checker

[Lonsing, FMCAD ‘20]

Reset
R1 ← R1 + 5
R2 ← R2 - R1
Checkpoint C
Reset
R1 ← R1 + 5
Soft Reset
R2 ← R2 – R1
(R1@C == R1)⋀
(R2@C == R2)
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How To Implement?

l Checkpoint

lFormal tool has simultaneous view of all time steps

l Soft Reset (Requires Design Support)

lReset microarchitectural state but leave 

architectural state unchanged

l Strong Correctness Guarantees

lBut Scalability still an Issue



Symbolic Starting States 
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R1 ← R1 + 5
R2 ← R2 – R1

Chosen by 
Model checker

R1 ← R1 + 5
R2 ← R2 - R1
R16 ← R16 + 5
R18 ← R18 – R16
(R1 == R16)⋀
(R2 == R18)

QED 
Module

Interleavings
covered

Checked by 
Model checker

Symbolic State S1
R1 ← R1 + 5
R2 ← R2 - R1
Checkpoint C
Symbolic State S2
R1 ← R1 + 5
Soft Reset
R2 ← R2 – R1
(Arch@S1 == Arch@S2) ->
(R1@C == R1)⋀
(R2@C == R2)
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How To Implement?

l Arch@S1 == Arch@S2

lFormal tool has simultaneous view of all time steps

lDesigns need to have clean separation of 

architectural/non-architectural state

l Symbolic State

lWhat about invalid/unreachable states?

lCan we make designs that are QED-compatible, 

even for invalid states?



A-QED for Hardware Accelerators
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1. Loosely-coupled accelerators 

2. Non-interfering execution

Ongoing work: expand A-QED for other classes

[Singh, DAC ‘20, Chattopadhyay, FMCAD ‘21]



Loosely Coupled Accelerators
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LCA

System-on-Chip (SoC)

Memory

On-chip network

Offload heavy tasks

Processo
r 

Core



Non-Interfering LCAs
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Non-interfering accelerators ≠ combinational circuits

Value of          independent of any other inputs 

On
LCA
f( )

LCA… … … …In Ij I2 I1 Oj O2 O1

= f( )∀ j, IjOj

Oj



Functional Consistency
Original Duplicate

Non-interfering 
LCA

If == :

==Check
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… …In I3 I2 I1

I1 In

O3 O2 O1On

O1 On



Functional Consistency

16

∀ possible interleavings of Original Duplicate

Non-interfering 
LCA

… …In I3 I2 I1 O3 O2 O1On

Non-interfering 
LCA

… …In I3 I2 I1 O3 O2 O1On

Non-interfering 
LCA

… …In I3 I2 I1 O3 O2 O1On

…



LCA Example

Ø 3 internal queues, 3 execution units
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clock_enable
f(x)

Output
f(x
)

f(x)

Input

Queue 3

Queue 1

Queue 2



clock_enable
f(x)

Output
f(x
)

f(x)

Input

Queue 3

Queue 3

Queue 1

I12 I9 I6 I3

I10 I7 I4 I1

I11 I8 I5 I2

O6

O1

O2 O1O2

1

O6
Queue 2

l Bug: Queue 3 always enabled

Ø pushed to f(x) but not latched
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Bug Example

I3

Ø produced instead ofO6 O3



I2 I1

A-QED: Functional Consistency

clock_enable
f(x)

Output
f(x
)

f(x)

Input

Queue 3

Queue 1

I1

If I1 = I3: expect f(I1) = f(I3)
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1

I1

I2

I3

Queue 2

Functional Consistency Example Original Duplicate

I2I3



f(x
)

I11 I8 I5

clock_enable
f(x)

Output

f(x)

Input

Queue 3

Queue 1

I12 I9 I6 I3

I10 I7 I4 I1

O6

O1

O1O2

A-QED: Functional Consistency

O6O1 ≠I1  ≠ I6,
therefore

BUG DETECTED
20

O6I2 O2
Queue 2

1



A-QED Setup

CHECK: O1 = Ok

If I1 = 
Ik

For pre-silicon verification only
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A-QED 
Module Accelerator

Original Duplicate

I1I2Ik …

∀ possible sequences 

I1I2Ik …

O1 O
2

Ok
…
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Need For Decomposition

• General challenge: A-QED scalability limited by large design sizes.

• Compositional verification: check correctness of sub-modules.

• Traditional techniques: complex setup, assumptions, properties.



A-QED2: A-QED with Decomposition
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• Functional consistency is inherently compositional

• Designs consist of functional sub-modules: sub-accelerators

• Sub-accelerators produce partial outputs

• Functional decomposition of Acc in Acc1 and Acc2:

• Input I and output O of Acc

• I = I1 → Acc1 → O1 = I2 → Acc2 → O2= O

[Chattopadhyay, FMCAD ‘21]



A-QED2: A-QED with Decomposition
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• Unique Design for Verification opportunity

• support A-QED2 design decomposition

• Break computation into chunks, vertically or horizontally

• Potential integration in HLS workflows

• Decomposition difficult for conventional formal verification

• Need to rethink properties (manually), false fails



Design for Verification

l How ready are designers to prioritize verification above 
other goals?
§How do we better trade-off between verification goals 

and other goals?
§How important is DfV in an agile design flow?

l Where are the sweet spots?  Big ROI?
§Making a design that decomposes easily
§Adding soft-reset capabilities
§Adding logic to simplify reasoning about symbolic 

starting states
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THANK YOU
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