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br i ght en( x,  y)  = i nput ( x,  y)  *  2;
bl ur ( x,  y)  = ( br i ght en( x,  y )  + br i ght en( x+1,  y )  +

br i ght en( x,  y+1)  + br i ght en( x+1,  y+1) ) / 4;
bl ur . i n( ) . t i l e( x,  y,  xo,  yo,  xi ,  yi ,  63,  63)

. hw_accel er at e( xi ,  xo) ;
br i ght en. st or e_at ( bl ur . i n( ) ,  xo)

. comput e_at ( bl ur . i n( ) ,  xo) ;
i nput . st r eam_t o_accel er at or ( ) ;
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// Algorithm
brighten(x, y) = input(x, y) * 2;
blur(x, y) = (brighten(x, y  ) + brighten(x+1, y  ) +
              brighten(x, y+1) + brighten(x+1, y+1))/4;
// Schedule
blur.in().tile(x, y, xo, yo, xi, yi, 63, 63)
    .hw_accelerate(xi, xo);
brighten.store_at(blur.in(), xo)
        .compute_at(blur.in(), xo);
input.stream_to_accelerator();



Unified Buffer:  
Compiling Halide Programs to 
Push-Memory Accelerators

Qiaoyi (Joey) Liu, Dillon Huff, Jeff Setter, Maxwell Strange,   
Mark Horowitz, Priyanka Raina, Fredrik Kjolstad



Introduction
Motivation 

• Accelerators use highly optimized push memories 
• Many efforts describe memory designs, but not how to compile to memory 

Challenges  

• Difficult to generalize the mapping process 

• Frontend algorithm: Stencil + DNNs 
• Backend architecture: HLS, library-based method 

• Hard to optimize the compile result: 

• Large design space 
• Manual effort for a specific application



Solution: the Unified Buffer

•   Create an abstraction 
• Describe the information when and where data flows  
• Bundled with memory port  
• In terms of operations 

• Leverage compiler Optimization 
• Polyhedral Analysis 
• Vectorization
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Automatically Synthesize 
Rewrite Rules using SMT
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Only need to modify the RTL!



Synthesizing Rewrite Rules 
for Diverse Architectures

Ross Daly, Caleb Donovick, Jack Melchert, Raj Setaluri, Nestan 
Tsiskaridze, Priyanka Raina, Clark Barrett, Pat Hanrahan



Accelerating Sparse Tensor Algebra
Olivia Hsu

Too many tensor kernels for fixed-function libraries and backends
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Accelerating Sparse Tensor Algebra
Olivia Hsu
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PEak: 
The Single Source of Truth

Caleb Donovick



State of the Art Specification

The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 2.2. RISC-V Foundation, 2017
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What went wrong?

• Functional Model might be wrong 

• RTL might be wrong 

• Might be unspecified behavior 

• Tests might differ
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No way to test textual 
specification



PEak Program

MagmaPython SMT

RTLSimulation Formal 
Model



PEak has many features
See my poster



Automated Design Space Exploration of 
CGRA Processing Element Architectures 

using Frequent Subgraph Analysis
Jackson Melchert, Kathleen Feng, Caleb Donovick, Ross Daly



How can we generate an optimal PE architecture?

1. Analyze application domain 
benchmarks to find possible 
optimizations

2. Quickly create PE designs that 
explore the design space

3. Automatically generate full 
compiler to run applications



Application Analysis - Frequent Subgraph Mining

Frequent subgraphs represent common computational blocks



Producing PEs - Frequent Subgraph Merging

Merging frequent subgraphs results in efficient and performant PEs
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Dynamic Partial Reconfiguration

Kalhan Koul - Rising 3rd Year PhD



Motivation for Dynamic Partial Reconfiguration

● Definition: Reconfigure parts of the CGRA (partial) without affecting other parts at runtime 
(dynamic) 

● Example: fixed-function accelerators vs reconfigurable accelerators 

DSP + Video + ML + Crypto 
+ Highly optimized accelerators 
- Cannot add new accelerators 
- Low hardware utilization 

DSP->(Reconf.)->Video+ML->(Reconf.)->Crypto 
+ Flexible to run any accelerator 
+ High hardware utilization 
- Reconfigurable hardware overhead 
- Reconfiguration time overhead 



Architectural Exploration

● Goal: develop and quantify the benefits of hardware architectural additions on top of a baseline 

CGRA, including : (a) Relocatable bitstream (b) Partial Reconfiguration (PR) region shape and 

interconnect network (c) Parallel Reconfiguration (d) Double Buffer Reconfiguration 

● Visit my poster to see the implementation/exploration of each!

Ex. Parallel Reconfiguration Ex. Double Buffer Reconfiguration



SMART COMPONENTS
AVOIDING LATE STAGE DESIGN
BUGS USING SESSION TYPES

Lack of abstraction and imprecise specifications
leads to debugging using gate level simulations
Smart Components surfaces these bugs in RTL

Abstract actions capture component interfaces
Session types verify composition of components
Unit testing verifies concrete implementations

lenny@cs.stanford.edu
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• Motivation: 
• Memory Consistency Models (MCM) specify legal outcomes of shared memory programs 

in multiprocessor 
• Check tools1  requires manually-constructed formal microarchitecture specifications 

(  models) as input 

• Goal: Efficient Check-based verification of hardware MCM implementations  

• Key Challenges:  

• Decomposition of complete  models 

• Gap between operational RTL and axiomatic  models

𝜇spec

𝜇spec
𝜇spec

Synthesizing Formal Models of Hardware from RTL for Efficient 
Verification of Memory Model Implementations

𝜇spec
Manual 

TranslationHardware Design

Check Tools 
• MCM verification 
• Security analysis

Yao Hsiao, Dominic P. Mulligan*, Nikos Nikoleris*, Gustavo Petri*, Caroline Trippel 
Stanford University, *ARM Research



Improving Energy Efficiency for DNNs on CGRAs with Local Storage in the PEs 

● With proper blocking schemes many dataflows can achieve close-to-optimal energy efficiency 

● Memory resource allocation has a larger impact on DNN energy 

● Goal: Introduce a new low-access-cost memory hierarchy (Ponds) to improve energy efficiency 
● Challenge: Should be extremely area and energy efficient, yet flexible enough to map different energy 

efficient schedules 

Design space of dataflow with optimal 
loop blocking schemes

DNN Accelerator Template with Hierarchical 
Memories

Introducing Ponds in Amber CGRA

Ankita Nayak
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Utilizing Hardware Generators 
for Agile RTL Refinement

Raj Setaluri, Alex Carsello, James Thomas, and Christopher Torng 

Stanford University



RTL refinement is a slow, iterative process

• Bogged down by 
tool spin-time

Architectural 
design-space 
exploration

Early RTL 
prototyping

RTL Refinement

PnRSynthPD 
Engineer

RTL 
Designer

Verilog

Logical Design Team Implementation Team

• Refinement is a 
cross-team process

• Have to up-level 
reports to source



A Source-Level Development Platform for 
Agile RTL Refinement

• Intelligently slice the circuit to get 
the parts you care about 

• Query against source-level names 

• Abstract away tool complexity

u_over_4 = u >> 2
u_over_2 = u >> 1
u_over_2_plus_B_over_2 = csa(u_over_2, B) >> 1
u_plus_B_over_4 = csa(u, B) >> 2
u_plus_B_over_2 = csa(u, B) >> 4
u_plus_B_over_2_B_over_2 = csa(u_plus_B_over_2, B) >> 1
odd_update_0 = odd_update(csa(u, y), B)
odd_update_1 = odd_update(csa(u, y), B)

>>> report_timing(from_=[u, B], to=[u_plus_B_over_2_B_over_2])
{
  "B[0]":                     0.01,
  "add_inst2.in1[0]":         0.01,
  "add_inst2.out[15]":        1.12,
  "lshr_inst4.in0[15]":       1.12,
  "lshr_inst4.out[9]":        1.21,
  "add_inst3.in0[9]":         1.21,
  "add_inst3.out[14]":        1.57,
}



A General-Purpose Memory 
System for Data-Intensive 

Accelerators
James Thomas



Data-Intensive Accelerator Design Platform Required

● Designing complex accelerator from scratch is way too expensive 

● CUDA programming is relatively easy -- you write code for one thread and 
then it is run in parallel on a huge number of cores to get high performance 

○ Can we have a similar model for accelerator design?



CUDA-like Accelerator Design Model

● Design and verify a single processing element (PE) that communicates in an 
AXI-like protocol to memory 

● Platform replicates this PE (100x+) into memory access fabric that handles 
communication with DRAM



Toy CGRA: 
 

Evaluating the Technology Portability of Agile Hardware Design Flow

P O - H A N  C H E N



Overview

Digital 
OpenLane flow

Stanford AHA! 
Tool Chain

HW 
Generation

App 
Scheduling

App/HW 
Mapping

EE 272B fast tape-out in 3 months!

SRAM Macro 130nm Technology

• Toy CGRA is a course project of EE272B



Copy-and-Patch Compilation

Haoran Xu and Fredrik Kjolstad

Stanford University
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The Need For Fast Compilation

* JIT compilers: compilation at runtime.

• database engine: SQL query ! machine code

• web browser: WebAssembly module ! machine code

* Need to compile fast AND generate good code!

* Our solution: Copy-and-Patch.

* Provides extremely fast compilation AND decent generated code.

Haoran Xu and Fredrik Kjolstad Stanford University Copy-and-Patch Compilation 2 / 4
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Copy-and-Patch Compilation

* Two example use cases: SQL compiler, WebAssembly compiler.

* Significantly outperforms existing approaches for fast compilation:

• LLVM -O0 (100x faster compilation, 15% better code)

• State-of-the-art baseline compilers from Chrome and Wasmer (5-20x

faster compilation, 50%–60% better code)

• Interpreters (10x faster execution)

* Works for both high-level languages (C-like) and low-level bytecodes

(WebAssembly-like).

Haoran Xu and Fredrik Kjolstad Stanford University Copy-and-Patch Compilation 3 / 4



How it works

* No free lunch.

* But we can stand on the shoulders of giants.

* Cleverly using Clang+LLVM as a preprocessor.

* Pre-compute a lot, so little work to do at runtime.

* For more details: poster!

Haoran Xu and Fredrik Kjolstad Stanford University Copy-and-Patch Compilation 4 / 4



Fast Extended GCD for Large Integers 
for Verifiable Delay Functions

Kavya Sreedhar, Mark Horowitz, Christopher Torng



Verifiable delay function (VDF)
Allows one party (prover) to convince the other party (verifier) that a 

certain amount of time has passed

X YF

Delay: Inherently sequential work 
that is slow to compute

𝑥,  𝑦 Check 
𝐹(𝑥) = 𝑦

Verifiable: The output of the puzzle 
is easy to verify to be correct

FAST

F

Mathematical 
Puzzle



The crypto community is excited about VDFs

The speed of VDF evaluation directly impacts the security of these blockchains



Accelerating VDFs depends on fast extended 
GCD computations

5%

41%

4%

50%

Partial  
GCD

Extended 
GCD

Modular multiplication

Addition, multiplication, division

Extended GCDs are cool again! 

Come hear about arithmetic circuit 
optimizations in the context of fast VDFs 

Come to our poster!


