Compiling Halide Programs to our CGRA
Jeff Setter
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Halide application 2> CGRA hardware
Halide IR
// Algorithm [
brighten(x, y) = input(x, y) * 2; B uffer
blur(x, y) = (brighten(x, y ) + brighten(x+l, vy ) + Extraction
brighten(x, y+1) + brighten(x+1, y+1))/4; ¥
// Schedule Abstract

U nified Buffer

blur.in().tile(x, y, xo0, yo, xi, yi, ’ )

[
B uffer

.hw accelerate(xi, x0);
brighten.store at(blur.in(), xo0)
.compute at(blur.in(), xo); Mapping
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input.stream to accelerator();
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Unified Buffer:
Compiling Halide Programs to
Push-Memory Accelerators
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Mark Horowitz, Priyanka Raina, Fredrik Kjolstad



Introduction

Motivation

o Accelerators use highly optimized push memories
« Many efforts describe memory designs, but not how to compile to memory

Challenges

« Difficult to generalize the mapping process

o Frontend algorithm: Stencil + DNNs
o Backend architecture: HLS, library-based method

o Hard to optimize the compile result:

o Large design space
« Manual effort for a specific application



Solution: the Unified Buffer

Create an abstraction
Describe the information when and where data flows

Leverage compiler Optimization

Bundled with memory port
In terms of operations

Polyhedral Analysis
Vectorization

Halide
Scheduling

Buffer
Extraction

Buffer
Mapping
Clockwork

brighten(x, y) = input(x, y) * 2;

blur(x, y) = (brighten(x, y ) + brighten(x+1,

brighten(x, y+1) + brighten(x+1
blur.tile(x, y, xo, vo, xi, vi, 63, 63)
-hw_accelerate(xi, x0);
brighten.store_at(blur, xo)
.compute_at(blur, xo);

y )+
s y+1))/4;

for (y, 0, 64)
for (x, @, 64)
brighten(x, y) = input(x, y) * 2;
for (y, 0, 63)
for (x, @, 63)
blur(x, y) = (brighten(x, y) + brighten(x+1
brighten(x, y+1) + brighten(x+1

> Y)+
> y+1))/4;
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Modification
Idea!



Measure
Performance




Measure
Performance

Manually
Modify



Measure
Performance

Broken!



Measure
Performance

Manually
Modify



Measure
Performance

Probably Still Broken!
Need to test and debug



Measure
Performance

Finally can benchmark but
that was time consuming
and error prone!



Many Modifications
To Try!!

Measure
Performance




Only need to modify the RTL!

Measure
Performance

Automatically Synthesize
Rewrite Rules using SMT



Synthesizing Rewrite Rules
for Diverse Architectures

Ross Daly, Caleb Donovick, Jack Melchert, Raj Setaluri, Nestan
Tsiskaridze, Priyanka Raina, Clark Barrett, Pat Hanrahan



Olivia Hsu
Accelerating Sparse Tensor Algebra

Too many tensor kernels for fixed-function libraries and backends
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Dense Matrix
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COO ELLPACK CSB
Blocked COO CSC
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Sparse vector Hash Maps

Coordinates
Dense Tensors

Blocked Tensors
Linked Lists
Compression Schemes
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CPU
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Cloud Computers
Supercomputers
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vectorize  unroll
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Olivia Hsu
Accelerating Sparse Tensor Algebra

Long Tail of Varying Compression More Performant Backend-Specific
Expressions X Structures X Backends X Transformations
(algorithm) (format) (platform) (schedules)
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PEak:
The Single Source of Truth

Caleb Donovick



State of the Art Specification

Volume I: RISC-V User-Level ISA V2.2 i 12 Volume I: RISC-V User-Level ISA

2.2 Base Instruction Formats The only difference between the S and B formats is that the 12-bit immediate field is used to encode
all bits in the instruction-encoded
ddle bits (imm(10:1])
All are bit stay in fixed positions, while the lowest bit in S format (inst[7]) en
b and must be aligned on a four-byte boundary in memory. An instruction format

branch offscts in multiples of 2 in the B format. Tnstead of shift

immediate left by one in hardware as is conventionally done, the

In the base ISA, there are four core instruction formats (R/1/S/U), as shown in Figure 2.

es a high-order bit in B

a fixed 32 bits in long

address misa

ied exception is generated on a taken branch or unconditional jump if the ta

address is not four-byte aligned. No instruction fotch misaligned cxception is generated for a Similarly. the ouly difference between the U and J formats is that the 20-bit immediate is shifted
conditional branch that is not taken. left by 12 bits to form U immediates and by 1 bit to form J immediates. The location of instruction
bits in the U and J format immediates is chosen to maximize overlap with the other formats and
with each other
The alignment constraint for base ISA instructions is relazed fo a two-byte boundary when
instruction cztensions with 16-bit lengths or other odd multiples of 16-bit lengths are added
n_ P RN Y VRN VY TR S S S
5 B 019 B un ) o [ fanci? 2 T i [ funcs | v Topcode] Rtype
Fanct? w2 [ ol [fae3| Gpeode ] Retype -
[ T 1T0] [t ] funes | i Topcode] I-type
[TIIED wl [fwe3| opeode | I-type
I I I s o [ — i - ) [l ] funcs [ im0 opcode] S-type
TS| | funetd | 0] | opeode ] Svpe T T T T T e
3117 [ opeode | U-type [ [EIE) T i Topcode] U-type
fImex T 1071 11 [ mn]19:12] i opcode ] J-type
Figure RISC-V base instruction formats. Each immediate subfield is labeled with the bit [ ) I [ d !
position (imm[z]) in the immediate value being produced, rather than the bit position within the
instruction’s immediate field as is usually done. Figure 2.3: RISC-V base instruction formats showing immediate variants,
The RISC-V ISA keeps the source (rs! and rs2) and destination (rd) registers at the same position Figure 2.4 shows the immediates produced by each of the base instruction formats, and is labeled
in all formats to simplify decoding. Except for the 5-bit immediates used in CSR instructions to show which instruction bit (inst[y]) produces each bit of the immediate value.
(Section 2.5), immediates are always sign-extended, and are gencrally packed towards the leftmost
available bits in the instruction and have been allocated to reduce hardware complexity. In partic-
ular, the sign bit for all immediates is always in bit 31 of the instruction to speed sign-extension ) 2 10 2_n LI
circnitry [ nst[31] 1] [inst[20]] Limmediate
[ Tt 1] Tst[30:25] | mst[118] | nst[7] ] S-immediate
Decoding register specifiers is usually on the critical paths in implementations, and so the in
struction format was chosen to keep all register specifirs at the same position in all formats at = Tt TEsBO T i 0] B immediate
ihe cspens of hving 1o mave immelite it ecross ormats (o property shared with RISC-1V [ BT (7] [instB025]] istIL Brimmediat
aka. SPUR [15]) _ .
In practice, most immediates are cither small or require all XLEN bits. We chose an asym- [instBIinst[30:20] [ inst[19:12] 0 U-immediate
metric immediate split (12 bits in reqular instructions plus o special load upper immediate. in-
siruction with 20 bits) lo inerease the apeode space available for regular instructions [ st 1] [ ust(19:12] [ inst20] [inst[30:25] [nst2421] | 0] J-immediate

Immediates are sign-eztended because we did not observe a benefit fo using zero-extension
Jor some immediates as in the MIPS ISA and wanted to keep the ISA as simple as possible

Figure 2.4: Types of immediate produced by RISC-V instructions. The fields are labeled with the
instruction bits used to construct their value. Sign extension always uses inst[31

2.3 Immediate Encoding Variants Sign-catension is one of the most critical operations on immediates (particularly in RV641), and
in RISC-V the sign bit for all immediates is aluays held in bit 31 of the instruction to_allow

sign-estension to proceed in parallel with instruction decoding,
Aithough more complez implementations might have scparate adders for branch and jump
calculations and so would not benefit from keeping the location of immediate bits constant across

There are a further two variants of the

sstruction formats (B/J) based on the handling of imme-
diates, as shown in Figure 2.3,

The RISC-V Instruction Set Manual, Volume |: User-Level ISA, Version 2.2. RISC-V Foundation, 2017
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What went wrong?

« Functional Model might be wrong
e RTL might be wrong

« Might be unspecified behavior

« Tests might differ



Textual
Specification

Functional Model Formal Model
Counter Formal /
Example _ Tools




No way to test textual
specification
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PEak has many features

See my poster



Automated Design Space Exploration of
CGRA Processing Element Architectures
using Frequent Subgraph Analysis

Jackson Melchert, Kathleen Feng, Caleb Donovick, Ross Daly



How can we generate an optimal PE architecture?

1. Analyze application domain

benchmarks to find possible

optimizations

2. Quickly create PE designs that

explore the design space
3. Automatically generate full
compiler to run applications

Number/Types
of Operations

Intraconnect

1/0 to
Interconnect

k (]

® e ®
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Application Analysis - Frequent Subgraph Mining

0 w0 21 wl 2 w2 3 w3 \‘ '/

Frequent subgraphs represent common computational blocks



Producing PEs - Frequent Subgraph Merging
) (o
@ @, 0 @
o =
(& (& o

Subgraph 1 Subgraph 2

Reconstructed Merged Graph

Merging frequent subgraphs results in efficient and performant PEs



Design Space Exploration Framework

Application Frequent Subgraph Analysis

Maximal

Ordered List

PE Hardware and Mapper Generation

PEak

Subgraph fF t Subgraph Merged s PEak PE RTL
Application(s Independent of Frequen h Specification h .
P:’n Halide( ) Mining Set Analysis Subgraphs Merging PE Graph Generation Compiler Verilog
I .
. A I'I ti Rewrité Rules Application Configuration Application !
. pplication
Clc—::':ldiizr Dataflow Graph - Applicati > Place & Bitstream —»> Simulation (Sé;nRe'?—\aI:i-gh gﬁ{ﬁi‘:‘g
P in CorelR ppiication Route Generation on CGRA y
Mapping ¥ +

CGRA Generation and Compilation Toolchain

| PE/CGRA Power, Performance, Area Estimation |
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Dynamic Partial Reconfiguration

Kalhan Koul - Rising 3rd Year PhD



Motivation for Dynamic Partial Reconfiguration

e Definition: Reconfigure parts of the CGRA (partial) without affecting other parts at runtime
(dynamic)
e Example: fixed-function accelerators vs reconfigurable accelerators

Workload over time I:l Active I:l Idle
DSP Video + ML Crypto

.| Dpsp f ,_DSP e DSP + Video + ML + Crypto

+ | | Accelerator 8 Accelerator 8 Accelerator

cpu | £ cpu | £ cru | E +  Highly optimized accelerators
L § Video e § L] Video e E ] Video g y p

P4 I o ator & I

] = g £ - Cannot add new accelerators
MEM (= 5“ Accehl‘:el;ator MEM & g Accehldel;'ator MEM & 5 ™ Accehlll;ator - LOW hardware Utlllzatlon

% Crypto l% Crypto ‘% Crypto

™l Accelerator ™ Accelerator ™ Accelerator
SoC with Fixed-Function Accelerators

- = video - DSP->(Reconf.)->Video+ML->(Reconf.)->Crypto

E § Accelerator E k

cPu Ml cPu el cPu HE| +  Flexible to run any accelerator
5 e £ §| oypm + High hgrdware utilization

mem ol § 1 mem Wl B ML em (ol - Reconfigurable hardware overhead
@l @ @ - Reconfiguration time overhead

SoC with Reconfigurable Accelerators (FPGA/CGRA)



Architectural Exploration

Goal: develop and quantify the benefits of hardware architectural additions on top of a baseline
CGRA, including : (a) Relocatable bitstream (b) Partial Reconfiguration (PR) region shape and

interconnect network (c) Parallel Reconfiguration (d) Double Buffer Reconfiguration

Visit my poster to see the implementation/exploration of each!

Ex. Parallel Reconfiguration

AXI Master System Interconnect

AXI Slave Global Buffer

GLB Tile 0 GLB Tile 1

el Switch e—> Switch

Bank | Bank Bank || Bank
o 1 o 1

Swm:h [ SW|tch

‘ DMA " DMA

| DMA H DMA )

Load DMA for Parallel
Reconfiguration

Data from bank Addr to bank

AN T

Generator
64-bit to
16-bit

[ [ Conf g# ration Netﬁo k S .|| configuration Data
DMA Output DMA Output
mﬂw“l Imﬂl
E-g”“fﬁ-%‘“‘t%% N llrs\ | -
C 5

uuuuuu

Parallel dy ic partial r
along CGRA columns

= Configuration === 64-bit Word

Ex. Double Buffer Reconfiguration

D Solid — In flight Kemel
|:| Plaid - Configuratio

GLB |_|||

Configuration 0 Configuration 1
Configuration Network

—  16-bit Word

2 Applications in Flight; 2 Configurations in the GLB 2 Applications in Fiight; 2 Configurs n the Array
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SMART COMPONENTS el °
AVOIDING LATE STAGE DESIGN ‘| EE == Lenny Truong
BUGS USING SESSION TYPES h
\Vg

e Lack of abstraction and imprecise specifications
leads to debugging using gate level simulations

e Smart Components surfaces these bugsin RTL
» Abstract actions capture component interfaces
» Session types verify composition of components
» Unit testing verifies concrete implementations

lenny@cs.stanford.edu



Synthesizing Formal Models of Hardware from RTL for Efficient
Verification of Memory Model Implementations

Yao Hsiao, Dominic P. Mulligan®*, Nikos Nikoleris*, Gustavo Petri*, Caroline Trippel
Stanford University, *ARM Research

o Motivation:

« Memory Consistency Models (MCM) specify legal outcomes of shared memory programs

in multiprocessor

o Check tools! requires manually-constructed formal microarchitecture specifications

(USPEC models) as input
Manual

Check Tools

Hardware Design r----322-~q=3757 """ > USPEC

e MCM verification

» Security analysis

« Goal: Efficient Check-based verification of hardware MCM implementations

« Key Challenges:
. Decomposition of complete USPCC models

. Gap between operational RTL and axiomatic #SPCC models




Improving Energy Efficiency for DNNs on CGRAs with Local Storage in the PEs

Ankita Nayak

With proper blocking schemes many dataflows can achieve close-to-optimal energy efficiency

Memory resource allocation has a larger impact on DNN energy

Goal: Introduce a new low-access-cost memory hierarchy (Ponds) to improve energy efficiency

Challenge: Should be extremely area and energy efficient, yet flexible enough to map different energy

efficient schedules
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(c) Batch 16 (GoogleNet).

Dataflow

(d) Batch 1 (GoogleNet).

Design space of dataflow with optimal
loop blocking schemes

Accelerator”
Tile|¢e= Tile <= Tile:
\
g 1 1
Tile e {Tile = Tile]

i 1 1 °

Tile <= Tile<= Tile \

PE
Array

Tile
Buffers

Tile

Double Buffer

siayng
pareys

Double Buffer
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DNN Accelerator Template with Hierarchical
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Introducing Ponds in Amber CGRA



Keyi Zhang
System-Level SoC Verification Framework

Thread 1 Th read 2 Bulk/Interrupt Transfer

Frame(1ms)
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< v / s
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Is there a bug?HW or SW?

Memory consistency bug?



Utilizing Hardware Generators
for Agile RTL Refinement

Raj Setaluri, Alex Carsello, James Thomas, and Christopher Torng

Stanford University



RTL refinement is a slow, iterative process

Architectural

. Early RTL .
design-space ® prototyping ﬁ> RTL Refinement
exploration

2B g“@“@\

RTL

Veril - PnR
Designer erios Engineer Synth
Logical Design Team Implementation Team
 Refinementis a e Bogged down by e Have to up-level

cross-team process tool spin-time reports to source



A Source-Level Development Platform for
Agile RTL Refinement

* [ntelligently slice the circuit to get
the parts you care about

e Query against source-level names

» Abstract away tool complexity

u_over_4 =u >> 2

u_over_Z2 =u > 1

u_over_2_plus_B_over_2 = csaCu_over_2, B) >> 1
u_plus_B_over_4 = csaCu, B) >> 2

u_plus_B_over_2 = csaCu, B) >> 4
u_plus_B_over_2_B_over_2 = csaCu_plus_B_over_2, B) >> 1
odd_update_0 = odd_update(csaCu, y), B)

odd_update_1 = odd_update(csaCu, y), B)

>>> report_timing(from_=[u, B], to=[u_plus_B_over_2_B_over_2])

{
"B[@]":
"add_inst2.inl1[@]":
"add_inst2.out[15]":
"lshr_inst4.in@[15]":
"lshr_inst4.out[9]":
"add_inst3.in@[9]":
"add_inst3.out[14]":

PRRPRRPRRPOS
UINNRERE PO
NP RNNP PR




A General-Purpose Memory
System for Data-Intensive
Accelerators

James Thomas



Data-Intensive Accelerator Design Platform Required

e Designing complex accelerator from scratch is way too expensive

e CUDA programming is relatively easy -- you write code for one thread and
then it is run in parallel on a huge number of cores to get high performance

o Can we have a similar model for accelerator design?



CUDA-like Accelerator Design Model

e Design and verify a single processing element (PE) that communicates in an

AXIl-like protocol to memory
e Platform replicates this PE (100x+) into memory access fabric that handles

communication with DRAM

Mem. System




Toy CGRA:
Evaluating the Technology Portability of Agile Hardware Design Flow

Po-HAN CHEN

Stanford University



Overview

« Toy CGRAs a course project of EE272B

Generation

App
Scheduling

App/HW
Mapping

OpenLane flow
) Fﬁ
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Tool Chain Digital 130nm Technology
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EE 272B fast tape-out in 3 months! =8

Stanford University



Copy-and-Patch Compilation

Haoran Xu and Fredrik Kjolstad
Stanford University

Haoran Xu and Fredrik Kjolstad Stanford University

Copy-and-Patch Compilation

DA




The Need For Fast Compilation

* JIT compilers: compilation at runtime.

e database engine: SQL query — machine code

e web browser: WebAssembly module — machine code

* Need to compile fast AND generate good code!

Haoran Xu and Fredrik Kjolstad Stanford University Copy-and-Patch Compilation 2/4



The Need For Fast Compilation

*

JIT compilers: compilation at runtime.

e database engine: SQL query — machine code

e web browser: WebAssembly module — machine code

*

Need to compile fast AND generate good code!

*

Our solution: Copy-and-Patch.

*

Provides extremely fast compilation AND decent generated code.

Haoran Xu and Fredrik Kjolstad Stanford University Copy-and-Patch Compilation 2/4



Copy-and-Patch Compilation

* Two example use cases: SQL compiler, WebAssembly compiler.

* Significantly outperforms existing approaches for fast compilation:

e LLVM -O0 (100x faster compilation, 15% better code)

e State-of-the-art baseline compilers from Chrome and Wasmer (5-20x

faster compilation, 50%-60% better code)

e Interpreters (10x faster execution)
* Works for both high-level languages (C-like) and low-level bytecodes
(WebAssembly-like).

3/4

Haoran Xu and Fredrik Kjolstad Stanford University Copy-and-Patch Compilation



How it works

*

No free lunch.

*

But we can stand on the shoulders of giants.

*

Cleverly using Clang+LLVM as a preprocessor.

*

Pre-compute a /ot, so little work to do at runtime.

*

For more details: poster!

Stencil

Generators MetaVar
%
(Section 5)

Stencil Library

. Binary
Bytecode/AST (Section 3)

5 Copy-and-Patch code
(Section 4)

Haoran Xu and Fredrik Kj i I Copy-and-Patch Compilation
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Fast Extended GCD for Large Integers
for Verifiable Delay Functions

Kavya Sreedhar, Mark Horowitz, Christopher Torng



Verifiable delay function (VDF)

Allows one party (prover) to convince the other party (verifier) that a
certain amount of time has passed

Mathematical

Puzzle
F X, Yy F > Check
& Fx)=y
’ FAST
Delay: Inherently sequential work Verifiable: The output of the puzzle

that is slow to compute is easy to verify to be correct
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The crypto community is excited about VDFs

Chia Network Announces 2nd °
VDF Competition with $100,000 ChIQ
in Total Prize Money

Matt Howard and Bram Cohen — April 4, 2019

S;,« THOMAS SIMMS APR 22,2019

Protocol Labs and Ethereum Foundation
Team Up to Research Verifiable Delay

Functions

9
gl Protocol Labs

A

Updated Aug 11, 2019 at 6:57 p.m. PDT

ethereum
foundation

At the cutting edge of blockchain research is a potential $15 million
dollar venture by the Ethereum Foundation centered around a
technology called Verifiable Delay Functions (VDFs).

<«

The speed of VDF evaluation directly impacts the security of these blockchains



Accelerating VDFs depends on fast extended S
GCD computations

Addition, multiplication, division
|

Extended GCDs are cool again! 59,

: .. Partial Extended
Come hear about arithmetic circuit GCD GeD

optimizations in the context of fast VDFs 41% 50%

Come to our poster!
4%
|
Modular multiplication



