
Compiling Halide Programs to our CGRA
 Jeff Setter

Halide application ! CGRA hardware

H alide

H alide I R

A bstrac t
U nified Buffer

P hysical
U nified Buffer

Scheduling

B uffer
Ext ract ion

B uffer
M apping

br i ght en(x, y) = i nput (x, y) * 2;
bl ur (x, y) = (br i ght en(x, y) + br i ght en(x+1, y) +

br i ght en(x, y+1) + br i ght en(x+1, y+1)) / 4;
bl ur . i n() . t i l e(x, y, xo, yo, xi , yi , 63, 63)

. hw_accel er at e(xi , xo) ;
br i ght en. st or e_at (bl ur . i n() , xo)

. comput e_at (bl ur . i n() , xo) ;
i nput . st r eam_t o_accel er at or () ;

f or (y, 0, 64)
f or (x, 0, 64)
br i ght en(x, y) = i nput (x, y) * 2;

f or (y, 0, 63)
f or (x, 0, 63)
bl ur (x, y) = (br i ght en(x, y) + br i ght en(x+1, y) +

br i ght en(x, y+1) + br i ght en(x+1, y+1)) / 4;

(x, y)

(x+1, y+1) (x, y+1) (x+1, y) (x, y)

0 1 64 65
Br i ght en
Buf f er

SR

A
G
G

T
B

MEM

SR

S
R
A
M

// Algorithm
brighten(x, y) = input(x, y) * 2;
blur(x, y) = (brighten(x, y) + brighten(x+1, y) +
 brighten(x, y+1) + brighten(x+1, y+1))/4;
// Schedule
blur.in().tile(x, y, xo, yo, xi, yi, 63, 63)
 .hw_accelerate(xi, xo);
brighten.store_at(blur.in(), xo)
 .compute_at(blur.in(), xo);
input.stream_to_accelerator();

Unified Buffer:
Compiling Halide Programs to
Push-Memory Accelerators

Qiaoyi (Joey) Liu, Dillon Huff, Jeff Setter, Maxwell Strange,
Mark Horowitz, Priyanka Raina, Fredrik Kjolstad

Introduction
Motivation

• Accelerators use highly optimized push memories
• Many efforts describe memory designs, but not how to compile to memory

Challenges

• Difficult to generalize the mapping process

• Frontend algorithm: Stencil + DNNs
• Backend architecture: HLS, library-based method

• Hard to optimize the compile result:

• Large design space
• Manual effort for a specific application

Solution: the Unified Buffer

• Create an abstraction
• Describe the information when and where data flows
• Bundled with memory port
• In terms of operations

• Leverage compiler Optimization
• Polyhedral Analysis
• Vectorization

ISA.pdf

ISA.pdf

Modification
Idea!

ISA.pdf

RTLCompiler Measure
Performance

Real
Application
Benchmark

Suite

ISA.pdf

RTL Measure
Performance

Manually
Modify

Compiler
Real

Application
Benchmark

Suite

ISA.pdf

RTL Measure
Performance

Broken!

Compiler
Real

Application
Benchmark

Suite

ISA.pdf

RTL Measure
Performance

Manually
Modify

Compiler
Real

Application
Benchmark

Suite

ISA.pdf

RTL Measure
Performance

Probably Still Broken! 
Need to test and debug

Compiler
Real

Application
Benchmark

Suite

ISA.pdf

RTL Measure
Performance

Finally can benchmark but
that was time consuming

and error prone!

Compiler
Real

Application
Benchmark

Suite

ISA.pdf

RTL Measure
Performance

Many Modifications
To Try!!

Compiler
Real

Application
Benchmark

Suite

ISA.pdf

RTL Measure
Performance

Automatically Synthesize
Rewrite Rules using SMT

Compiler
Real

Application
Benchmark

Suite

Only need to modify the RTL!

Synthesizing Rewrite Rules
for Diverse Architectures

Ross Daly, Caleb Donovick, Jack Melchert, Raj Setaluri, Nestan
Tsiskaridze, Priyanka Raina, Clark Barrett, Pat Hanrahan

Accelerating Sparse Tensor Algebra
Olivia Hsu

Too many tensor kernels for fixed-function libraries and backends

Quantum Chromodynamics

Hash MapsSparse vector

DatabaseLinked Lists
Compression Schemes

Cloud Storage

Data analytics

(tensor
factorization)

Linear Algebra

CSF
Coordinates

Blocked Tensors
Dense Tensors

ELLPACK

DIA

CSR
COO

DCSC

CSB
DCSR

CSC

Dense Matrix

Blocked DIA

BCSR

Blocked COO

CPU
TPUsGPUs

Sparse Tensor Hardware
Cloud Computers
Supercomputers

FPGA CGRAs

reorder
precompute

splitparallelize
map divide

unrollvectorize
position

Accelerating Sparse Tensor Algebra
Olivia Hsu

More Performant
Backends
(platform)

Varying Compression
Structures

(format)

Long Tail of
Expressions
(algorithm)

Backend-Specific
Transformations

(schedules)

Accelerating Sparse
Tensor Algebra

Olivia Hsu

TACO Literature

Sparse Dataflow Compiler

Other

Legend

PEak:
The Single Source of Truth

Caleb Donovick

State of the Art Specification

The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 2.2. RISC-V Foundation, 2017

Textual
Specification

Formal ModelFunctional Model RTL

Textual
Specification

Formal ModelFunctional Model RTL

TestsTests

Textual
Specification

Formal ModelFunctional Model RTL

TestsTests

What went wrong?

• Functional Model might be wrong

• RTL might be wrong

• Might be unspecified behavior

• Tests might differ

Textual
Specification

Formal ModelFunctional Model RTL

Formal
Tools

Counter
Example

No way to test textual
specification

PEak Program

MagmaPython SMT

RTLSimulation Formal
Model

PEak has many features
See my poster

Automated Design Space Exploration of
CGRA Processing Element Architectures

using Frequent Subgraph Analysis
Jackson Melchert, Kathleen Feng, Caleb Donovick, Ross Daly

How can we generate an optimal PE architecture?

1. Analyze application domain
benchmarks to find possible
optimizations

2. Quickly create PE designs that
explore the design space

3. Automatically generate full
compiler to run applications

Application Analysis - Frequent Subgraph Mining

Frequent subgraphs represent common computational blocks

Producing PEs - Frequent Subgraph Merging

Merging frequent subgraphs results in efficient and performant PEs

'ğƣňĺŪ͑®ƘñĐğ͑0ǕƘşŵƛñƯňŵŪ͑HƛñŨğǐŵƛś

&*5$�*HQHUDWLRQ�DQG�&RPSLODWLRQ�7RROFKDLQ

6XEJUDSK�
0LQLQJ

0D[LPDO�
,QGHSHQGHQW�
6HW�$QDO\VLV

6XEJUDSK�
0HUJLQJ

+DOLGH�
&RPSLOHU

3(DN�
6SHFLILFDWLRQ�
*HQHUDWLRQ

3(DN�
&RPSLOHU

&*5$�57/�
*HQHUDWLRQ

$SSOLFDWLRQ�
3ODFH�	�
5RXWH

&RQILJXUDWLRQ�
%LWVWUHDP�
*HQHUDWLRQ

$SSOLFDWLRQ�
6LPXODWLRQ�
RQ�&*5$

3(�&*5$�
6\QWKHVLV

3(�&*5$�3RZHU��3HUIRUPDQFH��$UHD�(VWLPDWLRQ

$SSOLFDWLRQ�)UHTXHQW�6XEJUDSK�$QDO\VLV 3(�+DUGZDUH�DQG�0DSSHU�*HQHUDWLRQ
2UGHUHG�/LVW�
RI�)UHTXHQW�
6XEJUDSKV

0HUJHG
3(�*UDSK

$SSOLFDWLRQ�
0DSSLQJ

5HZULWH�5XOHV

$SSOLFDWLRQ�V��
LQ�+DOLGH

3(�57/�
9HULORJ

$SSOLFDWLRQ
'DWDIORZ�*UDSK

LQ�&RUH,5

Dynamic Partial Reconfiguration

Kalhan Koul - Rising 3rd Year PhD

Motivation for Dynamic Partial Reconfiguration

● Definition: Reconfigure parts of the CGRA (partial) without affecting other parts at runtime
(dynamic)

● Example: fixed-function accelerators vs reconfigurable accelerators

DSP + Video + ML + Crypto
+ Highly optimized accelerators
- Cannot add new accelerators
- Low hardware utilization

DSP->(Reconf.)->Video+ML->(Reconf.)->Crypto
+ Flexible to run any accelerator
+ High hardware utilization
- Reconfigurable hardware overhead
- Reconfiguration time overhead

Architectural Exploration

● Goal: develop and quantify the benefits of hardware architectural additions on top of a baseline

CGRA, including : (a) Relocatable bitstream (b) Partial Reconfiguration (PR) region shape and

interconnect network (c) Parallel Reconfiguration (d) Double Buffer Reconfiguration

● Visit my poster to see the implementation/exploration of each!

Ex. Parallel Reconfiguration Ex. Double Buffer Reconfiguration

SMART COMPONENTS
AVOIDING LATE STAGE DESIGN
BUGS USING SESSION TYPES

Lack of abstraction and imprecise specifications
leads to debugging using gate level simulations
Smart Components surfaces these bugs in RTL

Abstract actions capture component interfaces
Session types verify composition of components
Unit testing verifies concrete implementations

lenny@cs.stanford.edu

SMART COMPONENTS
AVOIDING LATE STAGE DESIGN
BUGS USING SESSION TYPES

Lack of abstraction and imprecise specifications
leads to debugging using gate level simulations
Smart Components surfaces these bugs in RTL

Abstract actions capture component interfaces
Session types verify composition of components
Unit testing verifies concrete implementations

lenny@cs.stanford.edu

Lenny Truong

lenny@cs.stanford.edu

• Motivation:
• Memory Consistency Models (MCM) specify legal outcomes of shared memory programs

in multiprocessor
• Check tools1 requires manually-constructed formal microarchitecture specifications

(models) as input

• Goal: Efficient Check-based verification of hardware MCM implementations

• Key Challenges:

• Decomposition of complete models

• Gap between operational RTL and axiomatic models

𝜇spec

𝜇spec
𝜇spec

Synthesizing Formal Models of Hardware from RTL for Efficient
Verification of Memory Model Implementations

𝜇spec
Manual

TranslationHardware Design

Check Tools
• MCM verification
• Security analysis

Yao Hsiao, Dominic P. Mulligan*, Nikos Nikoleris*, Gustavo Petri*, Caroline Trippel
Stanford University, *ARM Research

Improving Energy Efficiency for DNNs on CGRAs with Local Storage in the PEs

● With proper blocking schemes many dataflows can achieve close-to-optimal energy efficiency

● Memory resource allocation has a larger impact on DNN energy

● Goal: Introduce a new low-access-cost memory hierarchy (Ponds) to improve energy efficiency
● Challenge: Should be extremely area and energy efficient, yet flexible enough to map different energy

efficient schedules

Design space of dataflow with optimal
loop blocking schemes

DNN Accelerator Template with Hierarchical
Memories

Introducing Ponds in Amber CGRA

Ankita Nayak

6\VWHP�/HYHO�6R&�9HULILFDWLRQ�)UDPHZRUN

0HPRU\�FRQVLVWHQF\�EXJ"

,QWHUUXSW�QRW�UHFHLYHG�SURSHUO\"

,V�WKHUH�D�EXJ"+:�RU�6:"

Keyi Zhang

Utilizing Hardware Generators
for Agile RTL Refinement

Raj Setaluri, Alex Carsello, James Thomas, and Christopher Torng

Stanford University

RTL refinement is a slow, iterative process

• Bogged down by
tool spin-time

Architectural
design-space
exploration

Early RTL
prototyping

RTL Refinement

PnRSynthPD
Engineer

RTL
Designer

Verilog

Logical Design Team Implementation Team

• Refinement is a
cross-team process

• Have to up-level
reports to source

A Source-Level Development Platform for
Agile RTL Refinement

• Intelligently slice the circuit to get
the parts you care about

• Query against source-level names

• Abstract away tool complexity

u_over_4 = u >> 2
u_over_2 = u >> 1
u_over_2_plus_B_over_2 = csa(u_over_2, B) >> 1
u_plus_B_over_4 = csa(u, B) >> 2
u_plus_B_over_2 = csa(u, B) >> 4
u_plus_B_over_2_B_over_2 = csa(u_plus_B_over_2, B) >> 1
odd_update_0 = odd_update(csa(u, y), B)
odd_update_1 = odd_update(csa(u, y), B)

>>> report_timing(from_=[u, B], to=[u_plus_B_over_2_B_over_2])
{
 "B[0]": 0.01,
 "add_inst2.in1[0]": 0.01,
 "add_inst2.out[15]": 1.12,
 "lshr_inst4.in0[15]": 1.12,
 "lshr_inst4.out[9]": 1.21,
 "add_inst3.in0[9]": 1.21,
 "add_inst3.out[14]": 1.57,
}

A General-Purpose Memory
System for Data-Intensive

Accelerators
James Thomas

Data-Intensive Accelerator Design Platform Required

● Designing complex accelerator from scratch is way too expensive

● CUDA programming is relatively easy -- you write code for one thread and
then it is run in parallel on a huge number of cores to get high performance

○ Can we have a similar model for accelerator design?

CUDA-like Accelerator Design Model

● Design and verify a single processing element (PE) that communicates in an
AXI-like protocol to memory

● Platform replicates this PE (100x+) into memory access fabric that handles
communication with DRAM

Toy CGRA:

Evaluating the Technology Portability of Agile Hardware Design Flow

P O - H A N C H E N

Overview

Digital
OpenLane flow

Stanford AHA!
Tool Chain

HW
Generation

App
Scheduling

App/HW
Mapping

EE 272B fast tape-out in 3 months!

SRAM Macro 130nm Technology

• Toy CGRA is a course project of EE272B

Copy-and-Patch Compilation

Haoran Xu and Fredrik Kjolstad

Stanford University

Haoran Xu and Fredrik Kjolstad Stanford University Copy-and-Patch Compilation 1 / 4

The Need For Fast Compilation

* JIT compilers: compilation at runtime.

• database engine: SQL query ! machine code

• web browser: WebAssembly module ! machine code

* Need to compile fast AND generate good code!

* Our solution: Copy-and-Patch.

* Provides extremely fast compilation AND decent generated code.

Haoran Xu and Fredrik Kjolstad Stanford University Copy-and-Patch Compilation 2 / 4

The Need For Fast Compilation

* JIT compilers: compilation at runtime.

• database engine: SQL query ! machine code

• web browser: WebAssembly module ! machine code

* Need to compile fast AND generate good code!

* Our solution: Copy-and-Patch.

* Provides extremely fast compilation AND decent generated code.

Haoran Xu and Fredrik Kjolstad Stanford University Copy-and-Patch Compilation 2 / 4

Copy-and-Patch Compilation

* Two example use cases: SQL compiler, WebAssembly compiler.

* Significantly outperforms existing approaches for fast compilation:

• LLVM -O0 (100x faster compilation, 15% better code)

• State-of-the-art baseline compilers from Chrome and Wasmer (5-20x

faster compilation, 50%–60% better code)

• Interpreters (10x faster execution)

* Works for both high-level languages (C-like) and low-level bytecodes

(WebAssembly-like).

Haoran Xu and Fredrik Kjolstad Stanford University Copy-and-Patch Compilation 3 / 4

How it works

* No free lunch.

* But we can stand on the shoulders of giants.

* Cleverly using Clang+LLVM as a preprocessor.

* Pre-compute a lot, so little work to do at runtime.

* For more details: poster!

Haoran Xu and Fredrik Kjolstad Stanford University Copy-and-Patch Compilation 4 / 4

Fast Extended GCD for Large Integers
for Verifiable Delay Functions

Kavya Sreedhar, Mark Horowitz, Christopher Torng

Verifiable delay function (VDF)
Allows one party (prover) to convince the other party (verifier) that a

certain amount of time has passed

X YF

Delay: Inherently sequential work
that is slow to compute

𝑥, 𝑦 Check
𝐹(𝑥) = 𝑦

Verifiable: The output of the puzzle
is easy to verify to be correct

FAST

F

Mathematical
Puzzle

The crypto community is excited about VDFs

The speed of VDF evaluation directly impacts the security of these blockchains

Accelerating VDFs depends on fast extended
GCD computations

5%

41%

4%

50%

Partial
GCD

Extended
GCD

Modular multiplication

Addition, multiplication, division

Extended GCDs are cool again!

Come hear about arithmetic circuit
optimizations in the context of fast VDFs

Come to our poster!

